116 Chapter 4Differentiation
This is a maximum or minimum, depending on the sign of the fourth derivative. For
example, the functiony 1 = 1 (x 1 − 1 1)
4satisfies (4.24), with a minimum atx 1 = 11.
EXAMPLE 4.23Find the stationary points of the quarticy 1 = 13 x
41 − 14 x
31 + 11.
For the stationary values,
= 1 0 whenx 1 = 1 0orx 1 = 1 1.
To determine the kinds of stationary points,
To determine the kind of stationary point atx 1 = 10 ,
whenx 1 = 1 0, a point of inflection
The function therefore has a single turning point, a minimum, at x 1 = 11 , when
y 1 = 10 , and a point of inflection at x 1 = 10 , when y 1 = 11. In fact, the function can be
factorized,
y 1 = 1 (x 1 − 1 1)
2(3x
21 + 12 x 1 + 1 1)
and has a double rootx 1 = 11 , and two complex roots.
0 Exercise 83
EXAMPLE 4.24In Hückel molecular orbital theory, the possible values of the
orbital energies of the πelectrons of ethene (C
2H
4) are given by the stationary values
of the quantity
ε 1 = 1 α 1 + 12 c(1 1 − 1 c
2)
122β
where αand βare constant ‘Hückel parameters’, and cis a variable. For the stationary
values of ε,
d
dc
ccc
ε
=− ββ− − =
−21 2 1 0
212 2 2 12() ()
dy
dx
x
33=−≠72 24 0
dy
dx
xx
x
x
22236 24
00
01
=−
==
=,
when
when a minimumm
dy
dx
=−= −12 12 12xxxx 1
322()
..................................................................o
1
1
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
......
.....
......
.....
......
.......
.....
......
......
.......
......
.........
.......
..............
.........................................................
.....................
...........
..........
.........
.......
........
......
........
.......
......
......
.......
.....
.......
......
......
......
......
.....
......
.......
......
.....
......
......
.....
......
.....
.......
......
.....
.......
......
.....
......
.......
......
.....
........
......
........
........
..............
...
..............
.......
.......
.....
.......
.....
.....
.......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
.......
....
.....
......
.....
.....
.....
.....
.....
.....
.....
......
......
....
.....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
Figure 4.10
