116 Chapter 4Differentiation
This is a maximum or minimum, depending on the sign of the fourth derivative. For
example, the functiony 1 = 1 (x 1 − 1 1)
4
satisfies (4.24), with a minimum atx 1 = 11.
EXAMPLE 4.23Find the stationary points of the quarticy 1 = 13 x
4
1 − 14 x
3
1 + 11.
For the stationary values,
= 1 0 whenx 1 = 1 0orx 1 = 1 1.
To determine the kinds of stationary points,
To determine the kind of stationary point atx 1 = 10 ,
whenx 1 = 1 0, a point of inflection
The function therefore has a single turning point, a minimum, at x 1 = 11 , when
y 1 = 10 , and a point of inflection at x 1 = 10 , when y 1 = 11. In fact, the function can be
factorized,
y 1 = 1 (x 1 − 1 1)
2
(3x
2
1 + 12 x 1 + 1 1)
and has a double rootx 1 = 11 , and two complex roots.
0 Exercise 83
EXAMPLE 4.24In Hückel molecular orbital theory, the possible values of the
orbital energies of the πelectrons of ethene (C
2
H
4
) are given by the stationary values
of the quantity
ε 1 = 1 α 1 + 12 c(1 1 − 1 c
2
)
122
β
where αand βare constant ‘Hückel parameters’, and cis a variable. For the stationary
values of ε,
d
dc
ccc
ε
=− ββ− − =
−
21 2 1 0
212 2 2 12
() ()
dy
dx
x
3
3
=−≠72 24 0
dy
dx
xx
x
x
2
2
2
36 24
00
01
=−
==
=,
when
when a minimumm
dy
dx
=−= −12 12 12xxxx 1
322
()
..................................................................
o
1
1
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
......
.....
......
.....
......
.......
.....
......
......
.......
......
.........
.......
..............
.........................................................
.....................
...........
..........
.........
.......
........
......
........
.......
......
......
.......
.....
.......
......
......
......
......
.....
......
.......
......
.....
......
......
.....
......
.....
.......
......
.....
.......
......
.....
......
.......
......
.....
........
......
........
........
..............
...
..............
.......
.......
.....
.......
.....
.....
.......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
.......
....
.....
......
.....
.....
.....
.....
.....
.....
.....
......
......
....
.....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
Figure 4.10