4.10 Stationary points 117
Division by 2βand multiplication by(1 1 − 1 c
2
)
122
gives
Thenε 1 = 1 α 1 ± 1 β.
EXAMPLE 4.25Snell’s law of refraction in geometric optics.
4
A ray of light travels between points P and Q across a phase boundary at O. In the
upper region, the speed of light isv
1
1 = 1 c 2 η
1
, where cis the speed of light in vacuum
and η
1
is the refractive index of the phase. In the lower region the speed of light is
v
2
1 = 1 c 2 η
2
. Snell’s law of refraction is
The law can be derived from a ‘principle of least time’, that the path followed is that of
least time.
5
The total time travelled from P to Q through point O is (distance 2 speed in
each phase),
The problem is to find point O such that tis a minimum. Choosing x
1
as the
independent variable, we have
r xy r xy Xx y
1
2
1
2
1
12
2
2
2
2
2
12
1
2
2
2
=+ , = + =− +
() ( )()
12
t
rr
=+
1
1
2
2
vv
sin
sin
θ
θ
η
η
1
2
1
2
2
1
==
v
v
()10
1
2
22
−−=,cc or c=±
4
Willebrord van Roijen Snell (1591–1626), Dutch mathematician and physicist, formulated the law of
refraction in 1621.
5
This use of the principle of least time, proposed by Fermat, was one of the examples used by Leibniz in his
1684 paper to demonstrate his method of finding maxima and minima.
...................................................................................................................................................................................................................................................................................................................................................
...
...
...
..
....
..
...
...
...
..
...
...
...
...
..
...
...
...
...
...
..
...
...
...
..
...
...
...
...
...
..
...
...
...
...
..
...
...
...
..
....
..
...
...
...
..
...
...
...
...
..
...
...
...
...
...
..
...
...
...
..
...
...
...
...
...
..
...
...
...
...
..
......
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.
...............
.......
.
....
............
......
.....
....
....
....
...
...
.
.
....
.....
....
.....
....
.....
....
.....
....
.....
....
...............
...........
.
...
....
...
...
...
...
...
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
...
..
..
.
...
..
..
.
...
..
..
.
...
...
..
...
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
.
..
...
.
..
...
.
..
...
.
..
...
.
..
...
.
..
...
.
..
...
.
..
...
.
..
...
.
..
...
.
...
..
.
...
..
.
..
...
.
...
..
.
...
..
.
...
..
.
...
..
.
...
..
.
...
..
.
...
..
.
...
..
.
...
..
.
...
..
..
..
..
..
..
..
.
...
..
..
..
..
..
o
θ
1
θ
2
y
1
r
1
x
1
x
2
y
2
r
2
Q
P
phaseboundary
Figure 4.11