The Chemistry Maths Book, Second Edition

(Grace) #1

4.10 Stationary points 117


Division by 2βand multiplication by(1 1 − 1 c


2

)


122

gives


Thenε 1 = 1 α 1 ± 1 β.


EXAMPLE 4.25Snell’s law of refraction in geometric optics.


4

A ray of light travels between points P and Q across a phase boundary at O. In the


upper region, the speed of light isv


1

1 = 1 c 2 η


1

, where cis the speed of light in vacuum


and η


1

is the refractive index of the phase. In the lower region the speed of light is


v


2

1 = 1 c 2 η


2

. Snell’s law of refraction is


The law can be derived from a ‘principle of least time’, that the path followed is that of


least time.


5

The total time travelled from P to Q through point O is (distance 2 speed in


each phase),


The problem is to find point O such that tis a minimum. Choosing x


1

as the


independent variable, we have


r xy r xy Xx y


1

2

1

2

1

12

2

2

2

2

2

12

1

2

2

2

=+ , = + =− +




() ( )()








12

t


rr


=+


1

1

2

2

vv


sin


sin


θ


θ


η


η


1

2

1

2

2

1

==


v


v


()10


1


2


22

−−=,cc or c=±


4

Willebrord van Roijen Snell (1591–1626), Dutch mathematician and physicist, formulated the law of


refraction in 1621.


5

This use of the principle of least time, proposed by Fermat, was one of the examples used by Leibniz in his


1684 paper to demonstrate his method of finding maxima and minima.


...................................................................................................................................................................................................................................................................................................................................................

...
...
...
..
....
..
...
...
...
..
...
...
...
...
..
...
...
...
...
...
..
...
...
...
..
...
...
...
...
...
..
...
...
...
...
..
...
...
...
..
....
..
...
...
...
..
...
...
...
...
..
...
...
...
...
...
..
...
...
...
..
...
...
...
...
...
..
...
...
...
...
..
......
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.

...............
.......
.

....

............

......

.....

....

....

....

...

...

.

.

....

.....

....

.....

....

.....

....

.....

....

.....

....

...............
...........
.

...
....
...
...
...
...
...

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...
...
..

...
...
..

.
..
...
..

.
..
...
..

.
..
...
..

.
..
...
..

.
.

..

...

.

..

...

.

..

...

.

..

...

.

..

...

.

..

...

.

..

...

.

..

...

.

..

...

.

..

...

.

...

..

.

...

..

.

..

...

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

..

..

..

..

..

..

.

...

..

..

..

..

..

o


θ


1

θ


2









y


1
r

1

x


1

x


2

y


2

r


2

Q


P


phaseboundary


Figure 4.11

Free download pdf