The Chemistry Maths Book, Second Edition

(Grace) #1

116 Chapter 4Differentiation


This is a maximum or minimum, depending on the sign of the fourth derivative. For


example, the functiony 1 = 1 (x 1 − 1 1)


4

satisfies (4.24), with a minimum atx 1 = 11.


EXAMPLE 4.23Find the stationary points of the quarticy 1 = 13 x


4

1 − 14 x


3

1 + 11.


For the stationary values,


= 1 0 whenx 1 = 1 0orx 1 = 1 1.


To determine the kinds of stationary points,


To determine the kind of stationary point atx 1 = 10 ,


whenx 1 = 1 0, a point of inflection


The function therefore has a single turning point, a minimum, at x 1 = 11 , when


y 1 = 10 , and a point of inflection at x 1 = 10 , when y 1 = 11. In fact, the function can be


factorized,


y 1 = 1 (x 1 − 1 1)


2

(3x


2

1 + 12 x 1 + 1 1)


and has a double rootx 1 = 11 , and two complex roots.


0 Exercise 83


EXAMPLE 4.24In Hückel molecular orbital theory, the possible values of the


orbital energies of the πelectrons of ethene (C


2

H


4

) are given by the stationary values


of the quantity


ε 1 = 1 α 1 + 12 c(1 1 − 1 c


2

)


122

β


where αand βare constant ‘Hückel parameters’, and cis a variable. For the stationary


values of ε,


d


dc


ccc


ε


=− ββ− − =



21 2 1 0


212 2 2 12

() ()


dy


dx


x


3

3

=−≠72 24 0


dy


dx


xx


x


x


2

2

2

36 24


00


01


=−


==



=,



when


when a minimumm







dy


dx


=−= −12 12 12xxxx 1


322

()


..................................................................

o


1


1










.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

......

.......

.....

......

......

.......

......

.........

.......

..............

.........................................................

.....................

...........

..........

.........

.......

........

......

........

.......

......

......

.......

.....

.......

......

......

......

......

.....

......

.......

......

.....

......

......

.....

......

.....

.......

......

.....

.......

......

.....

......

.......

......

.....

........

......

........

........

..............

...

..............

.......

.......

.....

.......

.....

.....

.......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

.....

.....

.....

.......

....

.....

......

.....

.....

.....

.....

.....

.....

.....

......

......

....

.....

......

.....

....

......

.....

.....

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Figure 4.10

Free download pdf