136 Chapter 5Integration
Figure 5.6 shows that the integrand, sin 1 x, has positive values when 01 < 1 x 1 < 1 π, and
negative values whenπ 1 < 1 x 1 < 12 π. The total ‘area under the curve’ is the sum of the two
areas labelled A
1
and A
2
in the figure, and the integral can be written as
where
This example shows that areas corresponding to negative values of the integrand
make negative contributions to the total. In this case the positive and negative
contributions cancel, and the average value of sin 1 xin the interval is zero.
0 Exercise 31
Integration of discontinuous functions
The function
is discontinuous at x 1 = 12 , but Figure 5.7 shows
that the function can be integrated across the
discontinuity if the range of integration is split at
the point of discontinuity. Thus,
This can always be done when the integrand has only a finite number of finite
discontinuities within the range of integration. A similar technique is used when the
function is continuous but has a discontinuous derivative.
=++=+=ZZ
1
2
2
3
221369 xdx ()x dx
ZZZ
1
3
1
2
2
3
fxdx fxdx fxdx() =+() ()
fx
x
x
x
x
()=
<
≥
2
21
2
2
if
if
A x dx A x dx
1
0
2
2
==+ZZ 22 = =−
π
π
π
sin and sin
Z
0
2
12
π
sinxdx A A=+
- 1
− 1
O π 2 π
A
1
A
2
x
si nx
........
..........
.....
...........
.
..
..
...
...
..
...
..
.
..
...
...
..
...
..
..
......
.....
.....
......
.....
......
......
.....
.....
......
.....
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
.......
.....
......
.......
......
.......
.......
.........
.............
........
..............
........
........
.......
......
.......
.....
......
......
......
.....
.......
.....
.....
......
......
.....
......
.....
......
......
.....
.....
......
.....
......
.....
.....
......
......
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
......
.....
......
.....
......
......
.....
......
......
......
......
......
......
......
........
.......
.........
..............................
.........
.......
........
......
......
.......
.....
......
......
......
.....
......
......
.....
......
.....
......
......
.....
.....
......
.....
......
......
.....
.....
......
.....
.....
......
.....
....
Figure 5.6
2
4
6
8
0 123
..
...
..
.
..
...
..
.
..
...
..
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
...........
............
..........
...........
............
...........
...........
............
..........
...........
............
...........
...........
............
..........
...........
............
....
.....
............
...........
...........
............
..........
...........
............
...........
...........
............
..........
...........
............
...........
...........
............
.........
Figure 5.7