The Chemistry Maths Book, Second Edition

(Grace) #1

5.3 The definite integral 137


EXAMPLE 5.7The function


is continuous at x 1 = 10 , but not smooth, the slope of its


graph changing discontinuously from + 1 to − 1 on passing


throughx 1 = 10 from left to right (Figure 5.8). The function


can be integrated if the range of integration is split at the


point of gradient discontinuity:


0 Exercises 32–34


Improper integrals


A definite integral is called improperwhen the integrand has an infinite discontinuity


at a point within the range of integration. If the discontinuity is at the pointx 1 = 1 c,


wherea 1 ≤ 1 c 1 ≤ 1 b, then the integral is defined as the limit, forε 1 > 10 ,


(5.17)


As shown in Figure 5.9, the point cis excluded because the integrand is not defined


there. When the limit in (5.17) is finite and unique then the value of the integral is the


‘area under the curve’.


If the discontinuity lies at one end of the range of integration, atx 1 = 1 asay, the integral


is defined as


(5.18)


ZZ


a

b

a

b

fxdx() lim= fxdx()



+

ε

ε

0


ZZZ


a

b

a

c

c

b

fxdx() lim=+fxdx() fxdx()








+

ε

ε

ε

0










=−


( )


+−


( )


=− −


−−−−

112 eeee


abab

ZZZ







=+=












a

b

x

a

x

b

x

a

x

edx edx edx e


||

0

0

0

0

bb

x

−e









fx e


ex


ex


x

x

x

()


||

==











if


if


0


0


.....

........

.........

.......

......

......

.....

.....

.....

.....

....

....

....

....

....

...

....

....

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

..

...

...

...

...

..

..

.....

........

.........

.......

......

......

.....

.....

.....

.....

....

....

....

....

....

...

....

....

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

..

...

...

...

...

..

..

0


1


−a
b

..

...

...

..

...

...

..

...

...

..

...

.

Figure 5.8


ab−ccc +


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

...

...

..

...

...

..

...

...

..

...

.

..

..

...

.

..

..

...

.

..

..

...

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

.

..

..

...

.

..

..

...

.

...

..

...

...

..

...

...

..

...

...

..

...

.

..

..

...

.

..

..

...

.

..

......

.....

......

.....

.....

......

.....

....

.....

.....

.....

.....

....

.....

.....

....

.....

.....

.....

.....

......

.....

.....

.......

.....

.....

......

.....

.....

.....

.....

.....

......

.....

......

......

.....

......

......

.....

......

.......

......

......

.......

......

.......

........

.......

........

.........

.........

..........

...........

...........

.............

...............

.................

....................

........................

.......................

...........................

...................................

...........................................

....................................

..

......

.....

......

.....

.....

......

.....

....

.....

.....

.....

.....

....

.....

.....

....

.....

.....

.....

.....

......

.....

.....

.......

.....

.....

......

.....

.....

.....

.....

.....

......

.....

......

......

.....

......

......

.....

......

.......

......

......

.......

......

.......

........

.......

........

.........

.........

..........

...........

...........

.............

...............

.................

....................

........................

.......................

...........................

...................................

...........................................

....................................

Figure 5.9

Free download pdf