5.3 The definite integral 137
EXAMPLE 5.7The function
is continuous at x 1 = 10 , but not smooth, the slope of its
graph changing discontinuously from + 1 to − 1 on passing
throughx 1 = 10 from left to right (Figure 5.8). The function
can be integrated if the range of integration is split at the
point of gradient discontinuity:
0 Exercises 32–34
Improper integrals
A definite integral is called improperwhen the integrand has an infinite discontinuity
at a point within the range of integration. If the discontinuity is at the pointx 1 = 1 c,
wherea 1 ≤ 1 c 1 ≤ 1 b, then the integral is defined as the limit, forε 1 > 10 ,
(5.17)
As shown in Figure 5.9, the point cis excluded because the integrand is not defined
there. When the limit in (5.17) is finite and unique then the value of the integral is the
‘area under the curve’.
If the discontinuity lies at one end of the range of integration, atx 1 = 1 asay, the integral
is defined as
(5.18)
ZZ
a
b
a
b
fxdx() lim= fxdx()
→
+
ε
ε
0
ZZZ
a
b
a
c
c
b
fxdx() lim=+fxdx() fxdx()
→
−
+
ε
ε
ε
0
=−
( )
+−
( )
=− −
−−−−
112 eeee
abab
ZZZ
−
−
−
−
−
=+=
a
b
x
a
x
b
x
a
x
edx edx edx e
||
0
0
0
0
bb
x
−e
−
fx e
ex
ex
x
x
x
()
||
==
≥
≤
−
−
if
if
0
0
.....
........
.........
.......
......
......
.....
.....
.....
.....
....
....
....
....
....
...
....
....
...
...
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
..
..
.....
........
.........
.......
......
......
.....
.....
.....
.....
....
....
....
....
....
...
....
....
...
...
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
..
..
0
1
−a
b
..
...
...
..
...
...
..
...
...
..
...
.
Figure 5.8
ab− ccc +
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
...
...
..
...
...
..
...
...
..
...
.
..
..
...
.
..
..
...
.
..
..
...
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
.
..
..
...
.
..
..
...
.
...
..
...
...
..
...
...
..
...
...
..
...
.
..
..
...
.
..
..
...
.
..
......
.....
......
.....
.....
......
.....
....
.....
.....
.....
.....
....
.....
.....
....
.....
.....
.....
.....
......
.....
.....
.......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
......
......
.....
......
......
.....
......
.......
......
......
.......
......
.......
........
.......
........
.........
.........
..........
...........
...........
.............
...............
.................
....................
........................
.......................
...........................
...................................
...........................................
....................................
..
......
.....
......
.....
.....
......
.....
....
.....
.....
.....
.....
....
.....
.....
....
.....
.....
.....
.....
......
.....
.....
.......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
......
......
.....
......
......
.....
......
.......
......
......
.......
......
.......
........
.......
........
.........
.........
..........
...........
...........
.............
...............
.................
....................
........................
.......................
...........................
...................................
...........................................
....................................
Figure 5.9