146 Chapter 5Integration
The integral as a length
Lety 1 = 1 f(x)be continuous in the rangea 1 ≤ 1 x 1 ≤ 1 b, and let sbe the length of its graph
from point A, atx 1 = 1 a, to point B, atx 1 = 1 b(Figure 5.14). To calculate this length, we
divide the arc ABinto segments of length ∆s. Then, by Pythagoras’ theorem, an
approximate value of the length of the segment betweenxandx 1 + 1 ∆xis
The corresponding element of length is
(5.37)
and the total length of arc ABis
(5.38)
EXAMPLE 5.12The circumference of a circle
The equation of the circle of radius aand centre at the origin isx
2
1 + 1 y
2
1 = 1 a
2
so that
y 1 = 1 ±(a
2
1 − 1 x
2
)
122
anddy 2 dx 1 = 13 x 2 (a
2
1 − 1 x
2
)
122
. Therefore,
and the circumference of the circle is
sdxa
dx
a
aa
dy
dx
=+
41 = 4
0
12
2
0
2
ZZ
−−x
2
11
2
2
22
2
22
=+
−
=
−
dy
dx
x
ax
a
ax
sds
dy
dx
dx
s
a
b
==+
ZZ
0
12
2
1
ds
dy
dx
=+ dx
12
2
1
∆∆ ∆
∆
∆
sx y
y
x
≈+ =+
12
22
12
2
() () 1
∆x
A
B
a x x+∆ x b
∆ x
∆ y
∆ s
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
...
..
...
...
...
.
................................................
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...........................
.................................
..................................
............................
..........................
............................
........................
......................
........................
....................
....................
.....................
..................
.................
...................
................
................
.................
..............
...............
...............
..............
.............
..............
.............
............
..............
...........
............
............
...........
...........
............
...........
..........
...........
..........
..........
...........
.........
.........
...........
.........
.........
..........
.........
........
..........
........
.........
.........
........
........
.........
........
........
.........
.......
........
.........
.......
........
........
.......
........
........
.......
.......
........
.......
.......
........
.......
.......
.......
....
Figure 5.14