The Chemistry Maths Book, Second Edition

(Grace) #1

5.4 The integral calculus 145


The integral is evaluated in Example 6.10; , and the area of the circle is four


times this.


Method 2.Divide the area of the circle into concentric


circular strips as in Figure 5.13. Given that the circumference


of a circle of radius ris 2 πr(see Example 5.12), the area


of the strip between rand r 1 + 1 ∆rlies between 2 πr∆rand


2 π(r 1 + 1 ∆r)∆r:


2 πr∆r 1 < 1 ∆A 1 < 12 π(r 1 + 1 ∆r)∆r (5.35)


and, when∆ris small enough,∆A 1 ≈ 12 πr∆r. The total area


is then


0 Exercise 48


We note that the indefinite integral can be viewed as a special case of the definite


integral, equation (5.34), in which the upper limit of integration, b, has been replaced


by the variable x, whilst the lower limit of integration, a, is arbitrary. The quantity


F(a)is therefore an arbitrary constant, and can be replaced by the symbol C:


(5.36)


The use of differentials


A convenient alternative approach to the definite integral as an area makes use of the


concept of the differential introduced in Section 4.12. This approach is widely used in


the application of the calculus to the formulation of physical problems.


Consider the expression (5.35) in Example 5.11. Division by ∆rgives


and, in the limit ∆r 1 → 10 ,


The quantitydA 2 dris the rate of change of the areaA(r)of the circle with respect


to the radius r. The corresponding differentialdA 1 = 12 πr 1 dris, in the language of


differentials, the area of a circular strip of radius rand ‘infinitesimal’ width dr; it is


an element of areaor differential area. The ‘sum’ of these elements is the integral


AdA rdr


A a

==ZZ


00

2 π




A


r


dA


dr


→= 2 πr


22 ππr


A


r


<< +rr




()∆


ZZfxdx fxdx Fx Fa Fx C


a

x

() ==−=+() () () ()


Ardra


a

==Z


0

2

2 ππ


Aa=π


2

4


a


........
.........
....
.....
....
...
...
...
...
..
...
...
..
...
..
...
..
...
..
...
...
..
....
...
...
....
....
....
........
..................

........

....

....

....

....

...

...

..

...

...

..

...

..

...

..

...

..

...

...

..

...

...

...

....

....

....

....

.........

........

........
............
.......
......
....
.....
....
...
....
...
...
...
....
..
...
...
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
...
...
...
...
...
....
...
....
....
....
.....
......
......
...........
...................

..........

.......

......

....

.....

....

...

....

...

...

...

...

...

...

...

...

..

...

..

...

...

..

..

...

...

..

...

..

...

..

...

..

...

...

..

...

...

...

...

...

...

....

...

....

....

....

.....

......

.......

..............

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...........

.................................

.................

...............

...........

...........

.........

........

.........

........

.......

.......

.......

......

.......

......

......

......

......

......

......

.....

.....

......

.....

.....

......

.....

.....

.....

.....

.....

......

.....

....

......

.....

....

......

.....

.....

.....

.....

.....

.....

.....

.....

......

.....

.....

......

.....

......

......

.....

......

......

......

......

.......

.......

......

........

.......

.......

.........

.........

.........

...........

............

.............

....................

.................................................................................

...................

..............

...........

...........

.........

.........

.........

.......

.......

........

.......

......

.......

......

......

......

......

.....

.......

.....

.....

......

.....

.....

......

.....

.....

.....

.....

.....

......

.....

....

......

.....

....

......

.....

.....

.....

.....

.....

.....

.....

.....

......

.....

.....

......

.....

......

......

.....

......

......

......

......

.......

......

.......

........

.......

.......

.........

........

.........

...........

............

.............

...................

................................

...........

Figure 5.13

Free download pdf