5.4 The integral calculus 145
The integral is evaluated in Example 6.10; , and the area of the circle is four
times this.
Method 2.Divide the area of the circle into concentric
circular strips as in Figure 5.13. Given that the circumference
of a circle of radius ris 2 πr(see Example 5.12), the area
of the strip between rand r 1 + 1 ∆rlies between 2 πr∆rand
2 π(r 1 + 1 ∆r)∆r:
2 πr∆r 1 < 1 ∆A 1 < 12 π(r 1 + 1 ∆r)∆r (5.35)
and, when∆ris small enough,∆A 1 ≈ 12 πr∆r. The total area
is then
0 Exercise 48
We note that the indefinite integral can be viewed as a special case of the definite
integral, equation (5.34), in which the upper limit of integration, b, has been replaced
by the variable x, whilst the lower limit of integration, a, is arbitrary. The quantity
F(a)is therefore an arbitrary constant, and can be replaced by the symbol C:
(5.36)
The use of differentials
A convenient alternative approach to the definite integral as an area makes use of the
concept of the differential introduced in Section 4.12. This approach is widely used in
the application of the calculus to the formulation of physical problems.
Consider the expression (5.35) in Example 5.11. Division by ∆rgives
and, in the limit ∆r 1 → 10 ,
The quantitydA 2 dris the rate of change of the areaA(r)of the circle with respect
to the radius r. The corresponding differentialdA 1 = 12 πr 1 dris, in the language of
differentials, the area of a circular strip of radius rand ‘infinitesimal’ width dr; it is
an element of areaor differential area. The ‘sum’ of these elements is the integral
AdA rdr
A a
==ZZ
00
2 π
∆
∆
A
r
dA
dr
→= 2 πr
22 ππr
A
r
<< +rr
∆
∆
()∆
ZZfxdx fxdx Fx Fa Fx C
a
x
() ==−=+() () () ()
Ardra
a
==Z
0
2
2 ππ
Aa=π
2
4
a
........
.........
....
.....
....
...
...
...
...
..
...
...
..
...
..
...
..
...
..
...
...
..
....
...
...
....
....
....
........
..................
........
....
....
....
....
...
...
..
...
...
..
...
..
...
..
...
..
...
...
..
...
...
...
....
....
....
....
.........
........
........
............
.......
......
....
.....
....
...
....
...
...
...
....
..
...
...
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
...
...
...
...
...
....
...
....
....
....
.....
......
......
...........
...................
..........
.......
......
....
.....
....
...
....
...
...
...
...
...
...
...
...
..
...
..
...
...
..
..
...
...
..
...
..
...
..
...
..
...
...
..
...
...
...
...
...
...
....
...
....
....
....
.....
......
.......
..............
.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...........
.................................
.................
...............
...........
...........
.........
........
.........
........
.......
.......
.......
......
.......
......
......
......
......
......
......
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
......
.....
......
......
.....
......
......
......
......
.......
.......
......
........
.......
.......
.........
.........
.........
...........
............
.............
....................
.................................................................................
...................
..............
...........
...........
.........
.........
.........
.......
.......
........
.......
......
.......
......
......
......
......
.....
.......
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
......
.....
......
......
.....
......
......
......
......
.......
......
.......
........
.......
.......
.........
........
.........
...........
............
.............
...................
................................
...........
Figure 5.13