The Chemistry Maths Book, Second Edition

(Grace) #1

5.6 Static properties of matter 151


The position of the centre of mass is given by (see equation (5.40))


(5.46)


and the moment of inertia with respect to an arbitrary pointx


0

on the line is


(5.47)


We note that, for example, the total mass can be interpreted as the ‘area under the


curve’ of the graph of the mass density functionρ(x).


EXAMPLE 5.14Find the total mass, centre of mass, and moment of inertia of the


linear distribution of mass of length aand densityρ(x) 1 = 1 b(a 1 − 1 x), 0 1 ≤ 1 x 1 ≤ 1 a.


The total mass is equal to the area a


2

b 22 of the triangle


shaded in Figure 5.19. Thus


The position of the centre of mass is


The moment of inertia with respect to an arbitrary pointx


0

on the line is


The value ofx


0

for whichIhas its minimum value is given by


so thatx


0

1 = 1 a 23. The moment of inertia therefore has its smallest value when computed


with respect to the centre of mass; this is a general result.


0 Exercise 51


dI


dx


ba


ax


0

2

0

0


12


== ()− + 412


Ixxxdxbaxxxdx


ba


aa

=−=−−=ZZ


0

0

2

0

0

2

2

12


ρ()() ()() (()aaxx


2

00

2

−+ 46


X


M


xxdx


a


axxdx


a


aa

==−=


12


3


0

2

0

ZZρ() ( )


Mxdxbaxdx


ab


aa

==−=ZZ


00

2

2


ρ() ( )


Ixxxdx


l

=−Z


0

0

2

ρ()( )


MX x x dx X


xxdx


xdx


l

l

l

=, =Z


Z


0 Z


0

0

ρ


ρ


ρ


()


()


()


or


x


ρ(x)


...........................................................................................................................................................................................................

.

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

.

..

..

...

...

..

...

..
...
..
...
...
..
..

......
......
........
......
......

ab


0 a


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......

.........

........

........

.........

........

........

.........

........

........

.........

........

........

.........

........

........

.........

........

........

.........

.........

........

.........

........

........

.........

........

........

.........

........

........

.........

........

........

.........

........

........

.........

........

........

.........

........

........

....

Figure 5.19

Free download pdf