The Chemistry Maths Book, Second Edition

(Grace) #1

164 Chapter 6Methods of integration


(6.3)


(6.4)


(6.5)


(6.6)


More generally, the relations can be used to express a functionsin


m

1 x 1 cos


n

1 x, where


mand nare positive integers, in terms of simple sines and cosines, but alternative


methods of integration are often simpler to use when mor nis greater than 2.


Table 6.1














For a 1 ≠ 1 b:














EXAMPLES 6.1The integrals in Table 6.1


Integral 1:


By equation (6.1),cos cos. Therefore


2

2


1


2


xx=+ 14








Zcos


2

2 xdx


Zsin cos


cos( ) cos( )


ax bx dx


abx


ab


abx


ab


=−

















1


2











+C


Zcos cos


sin( ) sin( )


ax bx dx


abx


ab


abx


ab


=


















1


2










+C


Zsin sin


sin( ) sin( )


ax bx dx


abx


ab


abx


ab


=















1


2










+C


Zsin cosax ax dx sin


a


=+ax C


1


2


2

Zsin sin cos


2

1


2


ax dx


a


=−ax ax ax C












Zcos sin cos


2

1


2


ax dx


a


=+ax ax ax C












sin cosx y=−++sin(xy xy) sin( )








1


2


cos cosxy=−++cos(xy xy) cos( )








1


2


sin sinx y=−−+cos(xy) cos(xy)








1


2


sin cosxx x= sin


1


2


2

Free download pdf