The Chemistry Maths Book, Second Edition

(Grace) #1

6.3 The method of substitution 165


Integral 3:


By equation (6.3), Therefore


where C′is a new arbitrary constant. Most tabulations of indefinite integrals omit the


arbitrary constant, and this example shows why different tabulations sometimes give


apparently different values for indefinite integrals.


Integral 4:


By equation (6.4),


Therefore


0 Exercise 1–10


6.3 The method of substitution


The polynomial


f(x) 1 = 1 (2x 1 − 1 1)


3

can be integrated by first expanding the cube and then integrating term by term (see


the corresponding discussion of the chain rule in Section 4.6):


ZZsin sin cos cos


sin


24


1


2


26


1


2


2


x x dx=−x x dx








=


xxx


C


2


6


6















sin


sin sin cos( ) cos cos c 24


1


2


26


1


2


xx=−−x x 2 x








=−oos. 6x








Zsin 2 sin 4xxdx


=+′


1


4


2


2

sin xC


=− −








+= +−


1


8


12 2


1


4


2


1


8


22

sin xCsin xC


ZZsin cos sin cos 22


1


2


4


1


8


xxdx==xdx−+ 4 xC


sin cos sin. 22


1


2


xx x= 4


Zsin 2 cos 2xxdx


=+








xxxC+


1


4


222sin cos


ZZcos cos sin


2

2


1


2


14


1


2


1


4


xdx=+x dx x 4 x








=+












+C

Free download pdf