The Chemistry Maths Book, Second Edition

(Grace) #1

188 Chapter 6Methods of integration



  1. (u 1 = 1 sin 1 x) 28.



    1. (x 1 = 1 sin 1 θ)




31



  1. (i)Use the substitutionx 1 = 1 a 1 sinh 1 uto show that.


(ii)Use the substitution to show that


Evaluate the definite integrals:




















38.Line shapes in magnetic resonance spectroscopy are often described by the Lorentz


function


.


Find


39.An approximate expression for the rotational partition function of a linear rotor is


whereθ


R

1 =1A


2

22 Ikis the rotational temperature,Iis the moment of inertia, and kis


Boltzmann’s constant. Evaluate the integral.


Section 6.4


Evaluate the integrals:










































51.Z


0

2

3


π 2

exdx


−x

cos


Zebxdx


ax

Zexdx cos


−x

Z sin 2


0

1

2

xxdxln


Z


lnx


x


dx


2

Zxxdxln
Z

0

22


xe dx


−x

Z


0

1

xe dx


x

Zxe dx


22 x

Z()xxdx+ 1


2

Zxxdx cos 2


3

Zxxdxsin sin


qJe dJ


r

JJ T

=+


−+

Z


0

1

21



()


()θ

R

Z


ω

ωω


0


gd().


g


T


T


()


()


ω


ωω


=


+−


1


1


2

0

2

π


Z


0

2


xe dx


−x

Z


0

1

2

2


dx


−x


Z


0

π 2

sin cosθθθd


Z


0

2

π

sin( x π)


x


dx






Z


1

2

2

32


xdx


x −


Z


dx


xa


xxa C


22

22





=++








ln +.


ux x a=+ +


22

Z


dx


xa


x


a


C


22

1





=













sinh


Z


x


x


dx u x


1 +


()=


Z


xdx


x


2

2

1 −


Z


dx


4 x


2





Zln cos sinxxdx
()

Zsin


3

xxdxcos

Free download pdf