232 Chapter 8Complex numbers
If the two numbers are a complex conjugate pair,z 1 = 1 x 1 + 1 iyandz* 1 = 1 x 1 − 1 iy, then
arg 1 z 1 = 1 −arg 1 z*
and
zz* 1 = 1 |z|
2
1 = 1 x
2
1 + 1 y
2
,arg 1 zz* 1 = 10
In the case of division,
(8.21)
and
(8.22)
For the inverse of a complex number, it follows from (8.22) that
(8.23)
and, becausecos(−θ) 1 = 1 cos 1 θandsin(−θ) 1 = 1 −sin 1 θ,
(8.24)
EXAMPLES 8.6Express each ofz
1
z
2
,z
1
2 z
2
andz
2
2 z
1
as a single complex number
for
(see Examples 8.5)
We have r
2
1 = 11 ,θ
1
1 = 1 π 2 4,andθ
2
1 = 14 π 23. Therefore
(i) θ
1
1 + 1 θ
2
1 = 119 π 212 and, by equation (8.19),
zz rr i
1212 12 12
2
1
=+++
cos(θθ) sin(θθ) = cos
99
12
19
12
ππ
isin
rr
12
=, 2
r
1
=, 2
zizi
12
2
44
4
3
4
3
=+
cos sin ,=+cos sin
ππ π π
11
zr
=−(cosθθisin )
11
zr
=−+−i
cos( ) sin( )θθ
z
z
r
r
i
1
2
1
2
12 12
=−+−
cos(θθ) sin(θθ)
z
z
z
z
z
z
zz
1
2
1
2
1
2
12
=,
arg =−arg() ()arg
|||*|zz xy== +,
22