The Chemistry Maths Book, Second Edition

(Grace) #1

232 Chapter 8Complex numbers


If the two numbers are a complex conjugate pair,z 1 = 1 x 1 + 1 iyandz* 1 = 1 x 1 − 1 iy, then


arg 1 z 1 = 1 −arg 1 z*


and


zz* 1 = 1 |z|


2

1 = 1 x


2

1 + 1 y


2

,arg 1 zz* 1 = 10


In the case of division,


(8.21)


and


(8.22)


For the inverse of a complex number, it follows from (8.22) that


(8.23)


and, becausecos(−θ) 1 = 1 cos 1 θandsin(−θ) 1 = 1 −sin 1 θ,


(8.24)


EXAMPLES 8.6Express each ofz


1

z


2

,z


1

2 z


2

andz


2

2 z


1

as a single complex number


for


(see Examples 8.5)


We have r


2

1 = 11 ,θ


1

1 = 1 π 2 4,andθ


2

1 = 14 π 23. Therefore


(i) θ


1

1 + 1 θ


2

1 = 119 π 212 and, by equation (8.19),


zz rr i


1212 12 12

2


1


=+++








cos(θθ) sin(θθ) = cos


99


12


19


12


ππ














isin


rr


12

=, 2


r


1

=, 2


zizi


12

2


44


4


3


4


3


=+








cos sin ,=+cos sin


ππ π π


11


zr


=−(cosθθisin )


11


zr


=−+−i








cos( ) sin( )θθ


z


z


r


r


i


1

2

1

2

12 12

=−+−








cos(θθ) sin(θθ)


z


z


z


z


z


z


zz


1

2

1

2

1

2

12

=,










arg =−arg() ()arg


|||*|zz xy== +,


22
Free download pdf