The Chemistry Maths Book, Second Edition

(Grace) #1

10.3 Functions of position 297


The temperature field is therefore described equally well by the function


g(r, 1 θ, 1 φ) 1 = 1 r


2

(cos


2

1 θ 1 − 1 sin


2

1 θ)such that, at any point in V,


T 1 = 1 f(x, y, z) 1 = 1 g(r, θ, φ)


In this example, the transformation from cartesian to spherical polar coordinates has


led to two simplifications of the representation of the field. Firstly, whereas Tdepends


on all three cartesian coordinates, x, y, and z, it only depends on two of the spherical


polar coordinates, rand θ, that is, the field is independent of the value of the angle


φ, and is therefore cylindrically symmetric about the polar (z) axis. The second


simplification is that the variables in the function ghave been separated; that is, the


functiong(r, 1 θ)has been factorized as the product of a function of rand a function


of θ. Such simplifications are important for the evaluation of multiple integrals and


for the solution of partial differential equations.


EXAMPLE 10.3Express in spherical polar coordinates: (i) (x


2

1 + 1 y


2

1 + 1 z


2

)


122

,


(ii) , (iii)


(i)(x


2

1 + 1 y


2

1 + 1 z


2

)


122

1 = 1 r,


(ii)


(iii)


0 Exercises 10–13


Density functions


Consider the distribution of mass in a three-dimensional body (see Section 5.6 for


a linear distribution of mass). Let P be some point within the body, and let ∆mbe


the mass in a volume∆vsurrounding the point P, as


shown in Figure 10.4. The ratio∆m 2 ∆vis then the mass


per unit volume, or the average mass density, in∆v.


If the mass is not distributed uniformly throughout


the body, the value of this ratio depends not only on


the position of the volume∆vbut also on the size and


shape of∆v. As the size of the volume is reduced to


zero,∆v 1 → 10 , the ratio approaches a limit


ρ= (10.3)









lim




v 0 ∆v


m




++ =




=


r


xyz


r


()r


22212

1




++ = ++ ×==



x


xyz xyz x


x


r


()() sinc


22212 22212

1


2


2 θ oosφ




++


r


()xyz


22212



++


x


()xyz


22212





..

.....

.....

.....

.....

.....

.....

.....

......

....

.....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

......

....

.....

......

.....

..

P

....................................

..

..

...

..

...

..

...

..

...

..

...

..

...................................
..
...
..
...
..
...
..
...
..
...
..
..
...

....

....

....

....

..................................
...
....
...
....

..
..
...
..
..
...
..
...
...
..
..
...
....
...
...
...
...
...

.....................................................................................................................................................................................................

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

.

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

z


y


x


V


....

..........

...........

.............

.......................

................................................................

..........................

.................

..............

.............

...........

..........

..........

.........

........

.........

.......

.......

........

.......

......

.......

......

......

......

.....

......

......

.....

.....

.....

.....

.....

......

.....

....

......

.....

.....

.....

.....

......

......

......

......

........

.......

........

..........

...........

..............

.........................

.......................................................

............................

.................

...............

.............

...........

..........

...........

........

.........

........

........

.......

........

......

.......

.......

......

.....

.......

.....

......

......

.....

.....

.....

.....

.....

......

....

.....

......

.....

.....

.....

.....

......

......

......

......

.......

.......

.....

Figure 10.4

Free download pdf