10.3 Functions of position 297
The temperature field is therefore described equally well by the function
g(r, 1 θ, 1 φ) 1 = 1 r
2
(cos
2
1 θ 1 − 1 sin
2
1 θ)such that, at any point in V,
T 1 = 1 f(x, y, z) 1 = 1 g(r, θ, φ)
In this example, the transformation from cartesian to spherical polar coordinates has
led to two simplifications of the representation of the field. Firstly, whereas Tdepends
on all three cartesian coordinates, x, y, and z, it only depends on two of the spherical
polar coordinates, rand θ, that is, the field is independent of the value of the angle
φ, and is therefore cylindrically symmetric about the polar (z) axis. The second
simplification is that the variables in the function ghave been separated; that is, the
functiong(r, 1 θ)has been factorized as the product of a function of rand a function
of θ. Such simplifications are important for the evaluation of multiple integrals and
for the solution of partial differential equations.
EXAMPLE 10.3Express in spherical polar coordinates: (i) (x
2
1 + 1 y
2
1 + 1 z
2
)
122
,
(ii) , (iii)
(i)(x
2
1 + 1 y
2
1 + 1 z
2
)
122
1 = 1 r,
(ii)
(iii)
0 Exercises 10–13
Density functions
Consider the distribution of mass in a three-dimensional body (see Section 5.6 for
a linear distribution of mass). Let P be some point within the body, and let ∆mbe
the mass in a volume∆vsurrounding the point P, as
shown in Figure 10.4. The ratio∆m 2 ∆vis then the mass
per unit volume, or the average mass density, in∆v.
If the mass is not distributed uniformly throughout
the body, the value of this ratio depends not only on
the position of the volume∆vbut also on the size and
shape of∆v. As the size of the volume is reduced to
zero,∆v 1 → 10 , the ratio approaches a limit
ρ= (10.3)
→
lim
∆
∆
v 0 ∆v
m
∂
∂
++ =
∂
∂
=
r
xyz
r
()r
22212
1
∂
∂
++ = ++ ×==
−
x
xyz xyz x
x
r
()() sinc
22212 22212
1
2
2 θ oosφ
∂
∂
++
r
()xyz
22212
∂
∂
++
x
()xyz
22212
..
.....
.....
.....
.....
.....
.....
.....
......
....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
....
.....
......
.....
..
P
....................................
..
..
...
..
...
..
...
..
...
..
...
..
...................................
..
...
..
...
..
...
..
...
..
...
..
..
...
....
....
....
....
..................................
...
....
...
....
..
..
...
..
..
...
..
...
...
..
..
...
....
...
...
...
...
...
.....................................................................................................................................................................................................
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
.
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.
z
y
x
V
....
..........
...........
.............
.......................
................................................................
..........................
.................
..............
.............
...........
..........
..........
.........
........
.........
.......
.......
........
.......
......
.......
......
......
......
.....
......
......
.....
.....
.....
.....
.....
......
.....
....
......
.....
.....
.....
.....
......
......
......
......
........
.......
........
..........
...........
..............
.........................
.......................................................
............................
.................
...............
.............
...........
..........
...........
........
.........
........
........
.......
........
......
.......
.......
......
.....
.......
.....
......
......
.....
.....
.....
.....
.....
......
....
.....
......
.....
.....
.....
.....
......
......
......
......
.......
.......
.....
Figure 10.4