350 Chapter 12Second-order differential equations. Constant coefficients
or, settingk 2 m 1 = 1 ω
2
, in the form of equation (12.20),
(12.35)
with general solution, in trigonometric form,
x(t) 1 = 1 d
1
1 cos 1 ωt 1 + 1 d
2
1 sin 1 ωt (12.36)
The state of the system is determined by the initial conditions. For example, let the
displacement and velocity at timet 1 = 10 be
x(0) 1 = 1 A, x′(0) 1 = 10 (12.37)
Then, for the initial displacement,
x(0) 1 = 1 A 1 = 1 d
1
1 cos 101 + 1 d
2
1 sin 101 = 1 d
1
For the velocity
x′(t) 1 = 1 −d
1
ω 1 sin 1 ωt 1 + 1 d
2
ω 1 cos 1 ωt
x′(0) 1 = 1 −d
1
ω 1 sin 101 + 1 d
2
ω 1 cos 101 = 1 d
2
ω 1 = 10
Therefored
1
1 = 1 A, d
2
1 = 10 , and the solution of the initial value problem is
x(t) 1 = 1 A 1 cos 1 ωt (12.38)
The graph of the solution is shown in Figure 12.3. The maximum displacement of the
body from equilibrium is the amplitudeA. The wavelength of the representative
curve is the periodτ 1 = 12 π 2 ω, the time taken for one complete oscillation. The inverse
of the period, ν 1 = 112 τ 1 = 1 ω 22 π, is called the frequencyof oscillation, the number of
oscillations in unit time. The quantityω 1 = 12 πνis called the angular frequency. The
frequency of oscillation is related to the force constant kbyω
2
1 = 1 k 2 m:
ων=, = (12.39)
k
m
k
m
1
2 π
dx
dt
x
2
2
2
+=ω 0
A
−A
0
t
x(t)
..............
.......
.......
..
.
.......
.......
.......
.
..
...
...
...
..
...
...
..
..
.
...
...
...
..
...
...
..
..
............
......
.......
.
.
......
.......
.......
.
.....
......
.......
.......
.
........
......
.......
.
...............
.
..
...
..
..
.
.
..
...
..
..
.
.
..
...
..
..
.
π/ω 2 π/ω 3 π/ω
...................................................................................................................................................
τ=2π/ω
.........
............
........
........
.......
......
.......
......
......
......
......
......
......
.....
......
......
.....
.....
......
......
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
......
.....
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.......
.....
......
.......
......
.......
........
........
............
...................
...........
.........
........
......
......
.......
......
......
......
......
......
......
.....
......
......
.....
.....
.......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
......
......
.....
......
......
......
.....
.......
......
.....
.......
......
.......
........
........
.............
................
.............
........
........
.......
......
.......
......
.....
.......
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
.....
......
.....
.....
......
.....
......
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
......
......
.....
.....
......
.....
......
......
.....
.....
......
......
.....
......
......
......
......
......
......
.......
......
.......
........
........
............
..................
............
........
........
.......
......
.......
......
......
......
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
.....
......
.....
.....
......
......
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
.....
......
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
......
......
.....
.....
......
.....
......
......
.....
.....
......
......
.....
.......
.....
......
......
......
......
.......
......
.......
........
........
............
.........
Figure 12.3