The Chemistry Maths Book, Second Edition

(Grace) #1

350 Chapter 12Second-order differential equations. Constant coefficients


or, settingk 2 m 1 = 1 ω


2

, in the form of equation (12.20),


(12.35)


with general solution, in trigonometric form,


x(t) 1 = 1 d


1

1 cos 1 ωt 1 + 1 d


2

1 sin 1 ωt (12.36)


The state of the system is determined by the initial conditions. For example, let the


displacement and velocity at timet 1 = 10 be


x(0) 1 = 1 A, x′(0) 1 = 10 (12.37)


Then, for the initial displacement,


x(0) 1 = 1 A 1 = 1 d


1

1 cos 101 + 1 d


2

1 sin 101 = 1 d


1

For the velocity


x′(t) 1 = 1 −d


1

ω 1 sin 1 ωt 1 + 1 d


2

ω 1 cos 1 ωt


x′(0) 1 = 1 −d


1

ω 1 sin 101 + 1 d


2

ω 1 cos 101 = 1 d


2

ω 1 = 10


Therefored


1

1 = 1 A, d


2

1 = 10 , and the solution of the initial value problem is


x(t) 1 = 1 A 1 cos 1 ωt (12.38)


The graph of the solution is shown in Figure 12.3. The maximum displacement of the


body from equilibrium is the amplitudeA. The wavelength of the representative


curve is the periodτ 1 = 12 π 2 ω, the time taken for one complete oscillation. The inverse


of the period, ν 1 = 112 τ 1 = 1 ω 22 π, is called the frequencyof oscillation, the number of


oscillations in unit time. The quantityω 1 = 12 πνis called the angular frequency. The


frequency of oscillation is related to the force constant kbyω


2

1 = 1 k 2 m:


ων=, = (12.39)


k


m


k


m


1


2 π


dx


dt


x


2

2

2

+=ω 0


A


−A


0


t


x(t)


..............
.......
.......
..

.

.......

.......

.......

.

..
...
...
...
..
...
...
..
..

.
...
...
...
..
...
...
..
..

............
......
.......
.

.

......

.......

.......

.

.....

......

.......

.......

.

........
......
.......
.

...............

.

..

...

..

..

.

.

..

...

..

..

.

.

..

...

..

..

.

π/ω 2 π/ω 3 π/ω


...................................................................................................................................................

τ=2π/ω


.........

............

........

........

.......

......

.......

......

......

......

......

......

......

.....

......

......

.....

.....

......

......

.....

......

.....

......

.....

......

.....

......

.....

.....

......

.....

.....

......

.....

......

.....

......

.....

.....

......

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

......

.....

......

.....

......

.....

.....

......

.....

.....

......

......

.....

......

.....

......

......

.....

......

......

.....

......

.......

.....

......

.......

......

.......

........

........

............

...................

...........

.........

........

......

......

.......

......

......

......

......

......

......

.....

......

......

.....

.....

.......

.....

.....

......

.....

......

.....

......

.....

......

.....

.....

......

.....

.....

......

.....

......

.....

......

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

......

.....

......

.....

......

.....

.....

......

.....

......

.....

......

.....

......

.....

......

......

.....

......

......

......

.....

.......

......

.....

.......

......

.......

........

........

.............

................

.............

........

........

.......

......

.......

......

.....

.......

......

.....

......

......

.....

......

......

.....

......

.....

......

......

.....

.....

......

.....

.....

......

.....

......

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

......

.....

......

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

......

......

.....

.....

......

.....

......

......

.....

.....

......

......

.....

......

......

......

......

......

......

.......

......

.......

........

........

............

..................

............

........

........

.......

......

.......

......

......

......

......

.....

......

......

.....

......

......

.....

......

.....

......

......

.....

.....

......

.....

.....

......

......

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

......

.....

.....

......

.....

......

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

......

......

.....

.....

......

.....

......

......

.....

.....

......

......

.....

.......

.....

......

......

......

......

.......

......

.......

........

........

............

.........

Figure 12.3

Free download pdf