The Chemistry Maths Book, Second Edition

(Grace) #1

16.5 The scalar (dot) product 461


EXAMPLE 16.14Charges in an electric field


The force experienced by a charge qin the presence of an electric fieldEisF 1 = 1 qE.


If the field is an electrostatic field (constant in time) then this force is conservative


so that, by equation (16.40), the components of the field,E 1 = 1 F 2 q, are (minus) the


derivatives of a functionφ 1 = 1 V 2 q:


(16.43)


The function φis the electrostatic potential function(potential energy per unit


charge) of the field.


If the field Eis a uniformfield, constant in space, then integration of these


equations gives (see (5.58) for a constant force)


φ(r) 1 = 1 −(xE


x

1 + 1 yE


y

1 + 1 zE


z

) 1 + 1 C 1 = 1 − 1 r 1
·

1 E 1 + 1 C (16.44)


whereφ(r) is the electrostatic potential at positionr 1 = 1 (x,y, z)and Cis an arbitrary


constant. The potential energy of charge qat rin the field is then


V 1 = 1 qφ(r) 1 = 1 −qr 1
·

1 E 1 + 1 qC (16.45)


The potential energy of a system of charges, q


1

at r


1

, q


2

at


r


2

=,q


N

atr


N

, is the sum of the energies of the individual charges,


For the potential (16.44), we therefore have


(16.46)


= 1 −


μ
1
·

1 E 1 + 1 QC


where μis the dipole moment of the system of charges and Qis the total charge. The


term QCis zero for an electrically neutral system or if the potential φis chosen to be


zero at the origin (the usual choice). Then


V 1 = 1 −


μ
1
·

1 E 1 = 1 −μE 1 cos 1 θ


0 Exercise 30


VqqC q


NN

=− + =−


==












∑∑


i

ii i

i

ii

rE r


11

()
·

1




=


















11
·

E


i

i

1

N

qC


Vq q q q


NN

i

N

i

=+ ++ =


=


11 22

1

φφ() ()rr φ( )r rφ()


i




E


x


E


y


E


z


xyz

=−




,=−




,=−




φφφ


E


μ


θ


..

.......

..........

....

....

....

....

....

....

....

....

.....

...

....

.....

...

....

.....

...

....

.....

...

....

.....

...

....

.....

...

....

.....

...

....

.....

...

....

.....

...

....

.....

...

....

.....

...

....

.....

...

....

.....

...

....

.....

....

...

.....

....

...

.....

....

...

........

....

....

.....

....

....

.....

....

.

....

....

....

.....

....

....

.....

....

.

.....

.....

.....

.....

....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

....

.....

.....

.....

....

......

....

.....

.....

.....

....

......

....

.....

.....

.....

....

......

....

.....

.....

......

....

....

....

....

....

....

.....

...

....

........

.......

.......

.......

..

Figure 16.23

Free download pdf