The Chemistry Maths Book, Second Edition

(Grace) #1

Only real coefficients are discussed here; the case of complex coefficients is shown


in Section 8.4 to involve no new principles.


EXAMPLE 2.13Write out in full:


(1)


(2)


(3)


0 Exercises 36–39


Degree n 1 = 11 : linear function


f(x) 1 = 1 a


0

1 + 1 a


1

x (2.11)


This is the simplest type of function, and is better known in the form


y 1 = 1 mx 1 + 1 c (2.12)


The graph of the function is a straight line. It has slope m, and intercepts the vertical


y-axis (whenx 1 = 10 ) at the pointy 1 = 1 c, as shown in Figure 2.6.


If we take any two points on the line, with coordinates (x


1

,y


1

) and (x


2

,y


2

), then


y


1

1 = 1 mx


1

1 + 1 c


y


2

1 = 1 mx


2

1 + 1 c


() () () ()−=−+−+−=−+


=


xxxxxxx


i

i

234234

2

4

x


n


xxxx


x


xx x


n

n

21 1135 35

0

3

11234


1


23 4


−−

=





= + + + =++ +


∑∑


ix x x x x x x x


i

i

=× +× +× +× =+ +


=


0123 23


01 2 3 23

0

3

2.5 Polynomials 41


....................................................

................................................................................................................................

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

.

..

..

...

.

...

..

...

...

..

...

...

..

...

...

..

...

.

..

..

...

.

..

..

...

.

−c/m


x


1

x


2

(x


1

,y


1

)


(x


2

,y


2

)


y


2

−y


1

x


2

−x


1

y


2

y


1

y


x


c
















...............

..................

...................

....................

..................

..................

.....................

..................

..................

.....................

..................

....................

..................

...................

..................

....................

..................

.....................

..................

..................

.....................

..................

..................

....................

...................

..................

....................

..................

...................

....................

..................

..................

.....................

..................

..................

.....................

..................

..................

....................

...................

..................

....................

..................

..................

.....................

..................

..................

.....................

..................

..................

....................

...................

..................

....................

..................

...................

....................

..................

..................

.....................

..................

..................

.....................

..................

..................

....................

...................

..................

....................

..................

...................

....................

..................

..................

.....................

..................

..................

.....................

..................

..................

....................

...................

..................

....................

..................

...................

....................

..................

..................

.....................

..................

..................

.....................

..................

..................

....................

...................

..................

....................

....

Figure 2.6

Free download pdf