The Chemistry Maths Book, Second Edition

(Grace) #1

44 Chapter 2Algebraic functions


The two roots are


(2.21)


and the quadratic has factorized form


ax


2

1 + 1 bx 1 + 1 c 1 = 1 a(x 1 − 1 x


1

)(x 1 − 1 x


2

) (2.22)


EXAMPLE 2.15The roots of the quadratic functionf(x) 1 =x


2

1 − 12 x 1 − 13.


We havea 1 = 11 ,b 1 = 1 − 2 ,andc 1 = 1 − 3 in formula (2.20). The roots are therefore


and the factorized form of the function isx


2

1 − 12 x 1 − 131 = 1 (x 1 + 1 1)(x 1 − 1 3).


EXAMPLE 2.16Find the roots of the quadratic functionf(x) 1 = 12 x


2

1 + 16 x 1 + 13.


We havea 1 = 12 ,b 1 = 16 ,andc 1 = 13 in formula (2.20), and the roots are


0 Exercises 44–46


The quantity


b


2

1 − 14 ac (2.23)


in (2.20) is called the discriminantof the quadratic function. Its value in Examples


2.15 and 2.16 is positive, and the function has two real roots, but in other examples it


can have zero or negative value. A graphical explanation of the three possible types of


discriminant is shown in Figure 2.8.


x=


−± −


=−±


()


63624


4


1


2


33


x=


+± +


=± =−


2412


2


12 1 3or


x


bb ac


a


x


bb ac


a


1

2

2

2

4


2


4


2


=


−+ −


,=


−− −


y


x


x
1

x
2




b


2

− 4 ac> 0


2 differentrealroots


......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

......

.....

......

.....

.....

......

......

.....

......

.....

......

......

.....

......

......

.....

......

......

......

.....

.......

......

.....

.......

......

......

.......

......

.......

.......

.......

.......

.........

........

..........

..............

.............................................

..............

.........

........

.........

.......

.......

........

......

......

.......

......

......

.......

......

......

......

......

.....

.......

.....

......

......

.....

......

......

.....

......

......

.....

.....

......

.....

......

......

.....

.....

......

.....

.....

......

.....

......

.....

......

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

.....

......

.....

.....

y


x


x
1

=x
2





b


2

− 4 ac= 0


2 equalrealroots


........

............

..........

...........

...........

...........

..........

............

..........

...........

...........

...........

..........

............

...........

...........

............

..........

...........

............

...........

...........

............

...........

...........

.............

...........

...........

.............

...........

............

.............

............

............

.............

.............

............

...............

.............

..............

.................

...............

.................

......................

..........................

...................................................................................

..........................

......................

.................

...............

.................

..............

.............

...............

............

.............

.............

............

............

.............

............

...........

.............

...........

...........

.............

...........

...........

............

...........

...........

............

...........

..........

............

...........

...........

............

..........

...........

............

..........

...........

...........

...........

..........

............

..........

..........

............

........

y


x


b


2

− 4 ac< 0


no realroots


......

............

...........

..........

............

...........

..........

............

...........

..........

............

...........

...........

............

...........

...........

............

...........

...........

.............

...........

............

............

............

............

.............

............

............

..............

.............

.............

...............

..............

..............

..................

.................

....................

...............................

.........................................................................

...............................

...................

..................

.................

...............

..............

...............

.............

.............

..............

............

............

.............

............

...........

.............

...........

............

............

...........

...........

.............

...........

..........

.............

...........

..........

............

...........

...........

............

..........

...........

...........

...........

..........

............

......

Figure 2.8

Free download pdf