α+ 2 β
α
α− 2 β
E
1
E
2
E
3
E
4
E
..
...
..
...
..
...
..
...
...
..
..
...
...
..
...
..
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
..
...
..
...
...
..
..
...
...
..
...
..
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
...
..
...
..
.
...
...
..
...
...
..
...
..
.............................................................................................................
..........................................................................................................................................................................................................................
.............................................................................................................
The following important theorem for the eigenvectors of symmetric matrices follows
from Properties 1–3:
The neigenvectors of a real symmetric matrix of order nform (or
can be chosen to form) a system of northogonal unit (orthonormal)
vectors:
(19.23)
EXAMPLE 19.9Hückel theory of cyclobutadiene
In the molecular-orbital theory of π-electron systems, the states of the πelectrons are
described by a matrix eigenvalue equation
HC 1 = 1 EC
in which the matrix Hrepresents the ‘effective Hamiltonian’ for a πelectron in the
system, the eigenvalues Eof Hare the orbital energies of the πelectrons, and the
eigenvectors Crepresent the corresponding molecular orbitals (the components of C
are the coefficients in a ‘linear combination of atomic orbitals’ (LCAO) description
of a molecular orbital). In the Hückel theory of cyclobutadiene (C
4
H
4
), His the real
symmetric matrix
(the Hückel parameters αand βare real negative scalars with the dimensions of
energy) with characteristic equation
= 1 (α 1 − 1 E)
2
(α 1 − 1 E 1 + 12 β)(α 1 − 1 E 1 − 12 β) 1 = 10
The eigenvalues (orbital energies) are therefore
E
1
1 = 1 α 1 + 12 β, E
2
1 = 1 E
3
1 = 1 α, E
4
1 = 1 α 1 − 12 β
and the eigenvalue spectrum is shown in Figure 19.1.
det(HI−=)
−
−
−
−
E
E
E
E
E
αβ β
βα β
βα β
ββα
0
0
0
0
H=
αβ β
βα β
βα β
ββα
0
0
0
0
xx
kl kl
kl
kl
T
==
=
≠
δ
1
0
if
if
19.3 Properties of the eigenvectors 541
Figure 19.1