The Chemistry Maths Book, Second Edition

(Grace) #1

α+ 2 β


α


α− 2 β


E


1

E


2

E


3

E


4

E


..

...

..

...

..

...

..

...

...

..

..

...

...

..

...

..

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

...

..

..

...

..

...

...

..

..

...

...

..

...

..

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..
...
...
..
...
...
..
...
..

.
...
...
..
...
...
..
...
..

.............................................................................................................

..........................................................................................................................................................................................................................

.............................................................................................................

The following important theorem for the eigenvectors of symmetric matrices follows


from Properties 1–3:


The neigenvectors of a real symmetric matrix of order nform (or


can be chosen to form) a system of northogonal unit (orthonormal)


vectors:


(19.23)


EXAMPLE 19.9Hückel theory of cyclobutadiene


In the molecular-orbital theory of π-electron systems, the states of the πelectrons are


described by a matrix eigenvalue equation


HC 1 = 1 EC


in which the matrix Hrepresents the ‘effective Hamiltonian’ for a πelectron in the


system, the eigenvalues Eof Hare the orbital energies of the πelectrons, and the


eigenvectors Crepresent the corresponding molecular orbitals (the components of C


are the coefficients in a ‘linear combination of atomic orbitals’ (LCAO) description


of a molecular orbital). In the Hückel theory of cyclobutadiene (C


4

H


4

), His the real


symmetric matrix


(the Hückel parameters αand βare real negative scalars with the dimensions of


energy) with characteristic equation


= 1 (α 1 − 1 E)


2

(α 1 − 1 E 1 + 12 β)(α 1 − 1 E 1 − 12 β) 1 = 10


The eigenvalues (orbital energies) are therefore


E


1

1 = 1 α 1 + 12 β, E


2

1 = 1 E


3

1 = 1 α, E


4

1 = 1 α 1 − 12 β


and the eigenvalue spectrum is shown in Figure 19.1.


det(HI−=)






E


E


E


E


E


αβ β


βα β


βα β


ββα


0


0


0


0


H=
















αβ β


βα β


βα β


ββα


0


0


0


0


xx


kl kl

kl


kl


T

==


=








δ


1


0


if


if


19.3 Properties of the eigenvectors 541


Figure 19.1

Free download pdf