The Chemistry Maths Book, Second Edition

(Grace) #1

19.4 Matrix diagonalization 543


wherec


2

andc


3

are arbitrary. The normalized vectors


are also orthogonal; they form an orthonormal set of four-dimensional vectors.


0 Exercises 20, 21


0 Exercise 22


19.4 Matrix diagonalization


Let the square matrix Ahave eigenvectorsx


1

, x


2

, x


3

, =, x


n

corresponding to eigenvalues


λ


1

, λ


2

, λ


3

, =, λ


n

:


Ax


k

1 = 1 λ


k

x


k

, k 1 = 1 1, 2, 3, =, n (19.24)


and let Xbe the matrix whose columns are the eigenvectors of A,


(19.25)


Then


AX 1 = 1 (Ax


l

Ax


2

Ax


3


  • Ax


n

)


= 1 (λ


1

x


1

λ


2

x


2

λ


3

A


3


  • λ


n

x


n

) (19.26)


= 1 XD


where Dis the diagonal matrix whose diagonal elements are the eigenvalues of A,


(19.27)
D=














λ


λ


λ


λ


1

2

3

00 0


000


00 0


000











 





n

















Xxxx x==()


123

11 12 13 1

21 22 23 2

31










n

n

n

xxx x


xxx x


xxxx x


xxx x


n

n
nn

nn

32 33

3

1
23




 




































CC


12

1


2


1


1


1


1


1


2


1


1


1


1


=
















,=




















,=


















,=



CC


34

1


2


1


1


1


1


1


2


1


1


1


−−
















1

Free download pdf