19.4 Matrix diagonalization 543
wherec
2
andc
3
are arbitrary. The normalized vectors
are also orthogonal; they form an orthonormal set of four-dimensional vectors.
0 Exercises 20, 21
0 Exercise 22
19.4 Matrix diagonalization
Let the square matrix Ahave eigenvectorsx
1
, x
2
, x
3
, =, x
n
corresponding to eigenvalues
λ
1
, λ
2
, λ
3
, =, λ
n
:
Ax
k
1 = 1 λ
k
x
k
, k 1 = 1 1, 2, 3, =, n (19.24)
and let Xbe the matrix whose columns are the eigenvectors of A,
(19.25)
Then
AX 1 = 1 (Ax
l
Ax
2
Ax
3
- Ax
n
)
= 1 (λ
1
x
1
λ
2
x
2
λ
3
A
3
- λ
n
x
n
) (19.26)
= 1 XD
where Dis the diagonal matrix whose diagonal elements are the eigenvalues of A,
(19.27)
D=
λ
λ
λ
λ
1
2
3
00 0
000
00 0
000
n
Xxxx x==()
123
11 12 13 1
21 22 23 2
31
n
n
n
xxx x
xxx x
xxxx x
xxx x
n
n
nn
nn
32 33
3
1
23
CC
12
1
2
1
1
1
1
1
2
1
1
1
1
=
,=
−
−
,=
−
−
,=
−
CC
34
1
2
1
1
1
1
1
2
1
1
1
−−
1