46 Chapter 2Algebraic functions
(2.24)
EXAMPLE 2.19Behaviour of a quadratic for large values of the variable
For values of|x|larger than about 100 the functionf(x) 1 = 1 x
2
1 + 1 x 1 − 11 differs fromx
2
by less than 1%. The difference decreases like 12 xas xincreases: 0.1% for|x| 1 = 110
3
,
0.001%, for|x| 1 = 110
5
,and 10
− 8
%for|x| 1 = 110
10
.
Quadratic functions are important in the physical sciences because they are used to
model vibrational motions of many kinds. The simplest kind of vibrational motion
is simple harmonic motion and, for example, a ball rolling forwards and backwards in
a parabolic container (a ‘parabolic potential well’) performs simple harmonic motion.
Other examples are the swings of a pendulum, the vibrations of atoms in molecules
and solids, the oscillating electric and magnetic fields in electromagnetic radiation.
EXAMPLE 2.20The classical simple harmonic oscillator
The simple (linear) harmonic oscillator consists of a body moving in a straight line
under the influence of a force
F 1 = 1 −kx
whose magnitude is proportional to the displacement xof the body from the fixed
point O, the point of equilibrium, and whose direction is towards this point. The
(positive) quantity kis called the force constant and the negative sign ensures that the
force acts in the direction opposite to that of the displacement. For a body of mass m,
the energy of the system is
Em kx=+
1
2
1
2
22
v
fx
x
a
a
x
a
x
a
x
ax
n
n
nn
n
n
()
=+ + ++ → →±
−− 12
2
0
as ∞
........
...........
...........
............
...........
...........
............
...........
...........
............
...........
...........
.............
...........
...........
............
...........
............
............
............
...........
.............
...........
............
.............
...........
............
.............
............
............
.............
............
............
..............
............
............
..............
.............
.............
..............
.............
.............
...............
..............
..............
................
..............
...............
.................
................
.................
...................
...................
...................
.........................
.........................
................................
.............................................................................
........
...........
...........
............
...........
...........
............
...........
...........
............
...........
...........
.............
...........
...........
............
...........
............
............
............
...........
.............
...........
............
.............
...........
............
.............
............
............
.............
............
............
..............
............
............
..............
.............
.............
..............
.............
.............
...............
..............
..............
................
..............
...............
.................
................
.................
...................
...................
...................
.........................
.........................
................................
.............................................................................
............
..............
...........
...........
............
...........
............
..............
................
.................
................
..............
...............
.................
...............
.................
...................
...................
.....................
..........................
...............................
..........................................................
............
..............
...........
...........
............
...........
............
..............
................
.................
................
..............
...............
.................
...............
.................
...................
...................
.....................
..........................
...............................
..........................................................
......
...........................................
..........................
.............
............
..........
..........
..........
.........
..........
...........
.........
......
...........................................
..........................
.............
............
..........
..........
..........
.........
.........
............
.........
.
.....
.....
......
.....
.....
.....
.....
......
........
.........
...........................
..........
.......
......
.....
......
.....
.....
.....
.....
......
.......
........
...................................
........
....... .......
....
......................
......
.....
..
.....
....
...
.....
...
.....
.................
..
........
.
.
.....
.....
.
......
....
Figure 2.9
....................................................................................................................................................................................................................................................................................................................................................................................................................................................................
..
........
.......
........
........
.......
- •
O x
x
equi librium mass m
force F=−kx
..................................................................................................................................................................................................................................................................................................
.
........................................
........................................
.............................................
........................
Figure 2.10