The Chemistry Maths Book, Second Edition

(Grace) #1

3.4 Trigonometric relations 75


Also, puttingx 1 = 1 y,


sin 12 x 1 = 121 sin 1 x 1 cos 1 x (3.23)


cos 12 x 1 = 1 cos


2

x 1 − 1 sin


2

x 1


= 111 − 121 sin


2

1 x 1 = 121 cos


2

1 x 1 − 11


(3.24)


where the alternative expressions for cos 12 xare obtained fromsin


2

x 1 + 1 cos


2

x 1 = 1 1.


EXAMPLE 3.11Expresssin 15 θandsin 1 θin terms of the sines and cosines of 2 θ


and 3 θ.


From equations (3.21),


sin 15 θ 1 = 1 sin(3θ 1 + 12 θ) 1 = 1 sin 13 θ 1 cos 12 θ 1 + 1 cos 13 θ 1 sin 12 θ


sin 1 θ 1 = 1 sin(3θ 1 − 12 θ) 1 = 1 sin 13 θ 1 cos 12 θ 1 − 1 cos 13 θ 1 sin 12 θ


0 Exercises 18–21


EXAMPLE 3.12Expresssin 13 θ 1 cos 12 θin terms ofsin 1 θandsin 15 θ.


From equations (3.21) it follows that


(3.25)


and, therefore,


0 Exercises 22


EXAMPLE 3.13Expresssin 13 θ 1 sin 12 θandcos 13 θ 1 cos 12 θin terms ofcos 1 θandcos 15 θ.


From equations (3.22) it follows that


sin 1 xsin 1 y


(3.26)


and, therefore,


sin 13 θ 1 sin 12 θ


0 Exercises 23


cos cos cos cos 32


1


2


θθ=+θ θ 5








=−








1


2


cos cosθθ 5


cos cosx y=−++cos(xy xy) cos( )








1


2


=−−+cos(xy xy) cos( )








1


2


sin cos sin sin 32


1


2


θθ=+ 5 θ θ








sin cosx y=++−sin(xy xy) sin( )








1


2

Free download pdf