The Chemistry Maths Book, Second Edition

(Grace) #1

84 Chapter 3Transcendental functions


The graphs of all the logarithmic functions are similar, with properties


log 111 = 1 0, log 1 x 1 → 1 +∞ as x 1 → 1 ∞, log 1 x 1 → 1 −∞ as x → 0 (3.38)


We note that (real) log 1 xis not defined for negative values of x.


The combination properties of logarithms are the properties of the indices


(exponents) of the corresponding exponentials; for the natural logarithm:


ln 1 x 1 + 1 ln 1 y 1 = 1 ln 1 xy (3.39)


(3.40)


ln 1 x


n

1 = 1 n 1 ln 1 x (3.41)


EXAMPLE 3.24Addition of logarithms. To prove equation (3.39),


let x 1 = 1 e


a

and y 1 = 1 e


b

,so thatxy 1 = 1 e


a+b

Then, by definition (3.36)


ln 1 x 1 = 1 a,ln 1 y 1 = 1 b,ln 1 xy 1 = 1 a 1 + 1 b


Therefore ln 1 x 1 + 1 ln 1 y 1 = 1 ln 1 xy.


EXAMPLE 3.25Combinations of logarithms.


0 Exercises 38


EXAMPLE 3.26Simplify the expression ln 1 (1 1 − 1 x


2

) 1 + 1 ln 1 (1 1 + 1 x)


− 1

1 − 1 ln 1 (1 1 − 1 x).


From the rule ln 1 x


n

1 = 1 n 1 ln 1 x, it follows that ln 1 (1 1 + 1 x)


− 1

1 = 1 −ln 1 (1 1 + 1 x). Then


ln ln ln( ) ln ln+= ×= =l 24 24 8nn( ) ln ln ln 30


ln ln ln ln


235 2 3 5


63


6


3


2


×× = + +


−= = ln ln ln ln ln


l


232222


3

==++


nn ln ln


1


2


22


1

==−



lln ln ln ln ln


ln ln( ) ln


1


2


1202 2


1


3


27 27 3


13

=− =− =−


== ln ln−= =ln



25 5


1


25


2

ln ln lnxy


x


y


−=

Free download pdf