3.7 The logarithmic function 83
3.7 The logarithmic function
The logarithmic function
6is the inverse function of the exponential:
if y 1 = 1 a
xthen x 1 = 1 log
a1 y (3.34)
and log
a 1yis called the logarithm to base aof y. The most important logarithmic
functions are the ordinary logarithm, to base 10,
y 1 = 110
x, x 1 = 1 log
101 y 1 = 1 lg y (3.35)
and the natural logarithm(sometimes called the Napierian logarithm), to base e,
y 1 = 1 e
x, x 1 = 1 log
e1 y 1 = 1 ln 1 y (3.36)
The ordinary logarithm log
10is sometimes given the symbol lg. The natural logarithm
log
eis nearly always given the symbol ln.
It follows from equations (3.34) to (3.36) that
y 1 = 1 log
aa
y1 = 1 log
1010
y1 = 1 ln 1 e
y(3.37)
EXAMPLE 3.23
log
22
31 = 1 3, log
1010
31 = 1 3, lg 110
− 21 = 1 −2,
log
ee
31 = 1 3, ln 1 e
− 1221 = 1 − 12 2, log
aa
01 = 1 log
a11 = 10
0 Exercises 37
We note that the logarithm of 1 to any base is zero.
The graph ofln 1 xand of its inverse function e
xare shown in Figure 3.19.
76John Napier (1550–1617), Scottish baron and amateur mathematician, published his invention of what
he called logarithms in the Mirifici logarithmorum canonis descriptio(A description of the wonderful canon
of logarithms) in 1614. Napier’s logarithms were based on a logarithm of 10
71 = 10. The first table of common
logarithms, withlog 111 = 10 andlog 1101 = 11 , was published, after a famous consultation with Napier, by Henry
Briggs (1561–1630), professor of geometry at Oxford, in the Arithmetica logarithmicain 1624. Logarithms greatly
simplified computations involving multiplication and division.
7The graph of a log function was first drawn in 1646 by Evangelista Torricelli (1608–1647).
e
xlnx
1
1
........................................................................................................................................................................................................................................
.....................
.................
...............
............
...........
..........
.........
........
.........
.......
........
.......
.......
......
.......
......
......
.......
......
......
......
.....
......
......
......
.....
......
.....
......
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.
.....
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
......
.....
......
......
......
.......
......
......
.......
.......
.......
........
.......
........
.........
.........
.........
..........
..........
...........
............
............
............
...............
..............
...............
..................
.................
..................
.....................
.....................
......................
..........................
.........................
...........................
..............................
Figure 3.19