Draft
12.1Introduction 201
Q
P P
h/2
h/3
2Q
P P
h/2
h/3
2Q
P P
2h/3
P P h/2
]]\]]\
]]\
]]\]]\
^]^]^
^]^]^
^]^]^^]^]^
^]^]^
]
_]_]
]
]
]``]
]
]``]
a]a
a]a
a]aa]a
a]a
b]b
b]bb]b
b]b
b]b
c]c]c
c]c]c
c]c]cc]c]c
c]c]c
d]d]d
d]d]dd]d]d
d]d]d
d]d]d
e]ee]e
e]e
e]ee]e
f]f
f]f
f]ff]f
f]f
g]gg]g
g]gg]g
g]g
g]g
h]h
h]h
h]hh]h
h]h
h]h
i]ii]i
i]i
i]ii]i
j]jj]j
j]jj]j
j]j
k]k]k
k]k]k
k]k]kk]k]k
k]k]k
l]l
l]ll]l
l]l
l]l
m]m]m
m]m]mm]m]m
m]m]m
m]m]m
n]nn]n
n]n
n]nn]n
o]o]oo]o]o
o]o]o
o]o]oo]o]o
p]p
p]p
p]pp]p
p]p
q]q]q
q]q]q
q]q]qq]q]q
q]q]q
r]r
r]rr]r
r]r
r]r
s]s]ss]s]s
s]s]ss]s]s
s]s]s
s]s]s
t]t
t]t
t]tt]t
t]t
t]t
u]u]uu]u]u
u]u]u
u]u]uu]u]u
v]vv]v
v]vv]v
v]v
w]w]ww]w]w
w]w]ww]w]w
w]w]w
w]w]w
x]x]x
x]x]x
x]x]xx]x]x
x]x]x
x]x]x
y]y]y]y]y]y]y
y]y]y]y]y]y]yy]y]y]y]y]y]y
y]y]y]y]y]y]y
y]y]y]y]y]y]y
z]z]z]z]z]z]zz]z]z]z]z]z]z
z]z]z]z]z]z]z
z]z]z]z]z]z]zz]z]z]z]z]z]z
{]{]{]{]{]{]{{]{]{]{]{]{]{
{]{]{]{]{]{]{
{]{]{]{]{]{]{{]{]{]{]{]{]{
|]|]|]|]|]|]|
|]|]|]|]|]|]|
|]|]|]|]|]|]||]|]|]|]|]|]|
|]|]|]|]|]|]|
}]}}]}
}]}
}]}}]}
~]~~]~
~]~~]~
~]~
W
h
fâ
f
f
y
fc
c
c
f =fc t
2fc
2f 2fc
2f =2f 0
t c
c
2fc
0
0 2fc
2f =2ft c
2fc
2fc 0
f
fc
c
c
c
f
f
0
2fc f =f
c
t c
f
fc
c
c fc
fc fc
f
- =
=
=
=
=
0 =
0
Midspan
Ends
Midspan
Q
Ends
f
Figure12.4:Alternative SchemesforPrestressinga RectangularConcreteBeam,(Nilson1978)
P sinq P sinq
P cosq P cosq
P
P cosq
P cosq
P sinq P sinq
P cosq
P sinq
P
2
P sinq P sinq
P cosq
M
P cosq
P sinq P sinq
P cosq
P sinq
P q
q
P
P e
P
P P
P e P e
e
P
qM
P P
None
P
P
P
2
None
P P
(a)
(b)
(d)
(f)
(g)
(e)
P
(c)
Member Equivalent load on concrete from tendonMoment from prestressing
Figure12.5:Determinationof Equivalent Loads