Draft
12.1Introduction 201
Q
P P
h/2h/3
2Q
P P
h/2h/3
2Q
P P
2h/3
P P h/2
]]\]]\
]]\
]]\]]\
^]^]^
^]^]^
^]^]^^]^]^
^]^]^
]
_]_]
]
]
]``]
]
]``]
a]aa]aa]aa]aa]ab]bb]bb]bb]bb]bc]c]cc]c]cc]c]cc]c]cc]c]cd]d]dd]d]dd]d]dd]d]dd]d]de]ee]ee]ee]ee]ef]ff]ff]ff]ff]fg]gg]gg]gg]gg]gg]gh]hh]hh]hh]hh]hh]hi]ii]ii]ii]ii]ij]jj]jj]jj]jj]jk]k]kk]k]kk]k]kk]k]kk]k]kl]ll]ll]ll]ll]lm]m]mm]m]mm]m]mm]m]mm]m]mn]nn]nn]nn]nn]no]o]oo]o]oo]o]oo]o]oo]o]op]pp]pp]pp]pp]pq]q]qq]q]qq]q]qq]q]qq]q]qr]rr]rr]rr]rr]rs]s]ss]s]ss]s]ss]s]ss]s]ss]s]st]tt]tt]tt]tt]tt]tu]u]uu]u]uu]u]uu]u]uu]u]uv]vv]vv]vv]vv]vw]w]ww]w]ww]w]ww]w]ww]w]ww]w]wx]x]xx]x]xx]x]xx]x]xx]x]xx]x]xy]y]y]y]y]y]yy]y]y]y]y]y]yy]y]y]y]y]y]yy]y]y]y]y]y]yy]y]y]y]y]y]yz]z]z]z]z]z]zz]z]z]z]z]z]zz]z]z]z]z]z]zz]z]z]z]z]z]zz]z]z]z]z]z]z{]{]{]{]{]{]{{]{]{]{]{]{]{
{]{]{]{]{]{]{
{]{]{]{]{]{]{{]{]{]{]{]{]{
|]|]|]|]|]|]|
|]|]|]|]|]|]|
|]|]|]|]|]|]||]|]|]|]|]|]|
|]|]|]|]|]|]|
}]}}]}
}]}
}]}}]}
~]~~]~
~]~~]~
~]~
W
h
fâ
f
f
y
fc
c
c
f =fc t
2fc
2f 2fc
2f =2f 0
t cc
2fc
0
0 2fc
2f =2ft c
2fc
2fc 0
f
fc
c
c
c
f
f
0
2fc f =f
c
t c
f
fc
c
c fc
fc fc
f
- =
=
=
=
=
0 =
0
Midspan
Ends
Midspan
Q
Ends
f
Figure12.4:Alternative SchemesforPrestressinga RectangularConcreteBeam,(Nilson1978)
P sinq P sinqP cosq P cosqPP cosqP cosqP sinq P sinqP cosq
P sinqP2P sinq P sinqP cosqMP cosqP sinq P sinqP cosq
P sinqP qqPP ePP PP e P eeP
qMP P
NonePPP2NoneP P(a)(b)(d)(f)(g)(e)P(c)Member Equivalent load on concrete from tendonMoment from prestressingFigure12.5:Determinationof Equivalent Loads