Draft
13.1Arches 215
Solvingthosefourequationssimultaneouslywe have:
2
6
6
6
4
140 26 : 25 0 0
0 1 0 1
1 0 1 0
80 60 0 0
3
7
7
7
5
8
>
>
>
<
>
>
>
:
RAy
RAx
RCy
RCx
9
>
>
>
=
>
>
>
;
=
8
>
>
>
<
>
>
>
:
2 ; 900
80
50
3 ; 000
9
>
>
>
=
>
>
>
;
)
8
>
>
>
<
>
>
>
:
RAy
RAx
RCy
RCx
9
>
>
>
=
>
>
>
;
=
8
>
>
>
<
>
>
>
:
15 : 1 k
29 : 8 k
34 : 9 k
50 : 2 k
9
>
>
>
=
>
>
>
;
(13.4)
We cancheck ourresultsby consideringthesummationwithrespectto b fromtheright:
(+
) M
B
z
= 0; (20)(20) (50:2)(33:75)+ (34:9)(60)= 0
p
(13.5)
Example13-2: Semi-CircularArch, (Gerstle1974)
Determinethereactionsof thethreehingedstaticallydeterminedsemi-circulararch under
itsowndeadweightw(per unitarclengths, whereds=rd).13.6
R cosq
R
A
B
C
R
A
B
q
dP=wRdq
q
q r
Figure13.6: Semi-Circularthreehingedarch
Solution:
I Reactions Thereactionscanbe determinedbyintegratingtheloadover theentirestruc-
ture
- VerticalReaction is determinedrst:
(+
) MA = 0; (Cy)(2R) +
Z
=
=0
wRd
|{z}
dP
R(1 + cos)
| {z }
moment arm
= 0 (13.6-a)
)Cy =
wR
2
Z
=
=0
(1 + cos)d=
wR
2
[ sin]j
=
=0
=
wR
2
[( sin) (0 sin0)]
=
2
wR (13.6-b)
- HorizontalReactions aredeterminednext
(+
) MB = 0; (Cx)(R) + (Cy)(R)
Z
=
2
=0
wRd
|{z}
dP
Rcos
| {z }
moment arm
= 0 (13.7-a)