Draft
13.1Arches 215
Solvingthosefourequationssimultaneouslywe have:
2
6
6
6
4140 26 : 25 0 0
0 1 0 1
1 0 1 0
80 60 0 0
3
7
7
7
58
>
>
>
<>
>
>
:RAy
RAx
RCy
RCx
9
>
>
>
=>
>
>
;=
8
>
>
>
<>
>
>
:2 ; 900
80
50
3 ; 000
9
>
>
>
=>
>
>
;)
8
>
>
>
<>
>
>
:RAy
RAx
RCy
RCx
9
>
>
>
=>
>
>
;=
8
>
>
>
<>
>
>
:15 : 1 k
29 : 8 k
34 : 9 k
50 : 2 k
9
>
>
>
=>
>
>
;(13.4)
We cancheck ourresultsby consideringthesummationwithrespectto b fromtheright:
(+
) MB
z= 0; (20)(20) (50:2)(33:75)+ (34:9)(60)= 0
p
(13.5)Example13-2: Semi-CircularArch, (Gerstle1974)
Determinethereactionsof thethreehingedstaticallydeterminedsemi-circulararch under
itsowndeadweightw(per unitarclengths, whereds=rd).13.6
R cosqRABCRABqdP=wRdqqq rFigure13.6: Semi-Circularthreehingedarch
Solution:
I Reactions Thereactionscanbe determinedbyintegratingtheloadover theentirestruc-
ture
- VerticalReaction is determinedrst:
(+
) MA = 0; (Cy)(2R) +Z
==0
wRd
|{z}dP
R(1 + cos)
| {z }moment arm
= 0 (13.6-a)
)Cy =
wR
2
Z
==0
(1 + cos)d=
wR
2
[ sin]j
=
=0=
wR
2
[( sin) (0 sin0)]
=
2
wR (13.6-b)
- HorizontalReactions aredeterminednext
(+
) MB = 0; (Cx)(R) + (Cy)(R) Z
=
2=0
wRd
|{z}dP
Rcos
| {z }moment arm
= 0 (13.7-a)