Draft
13.1Arches 217
Z
=0
wRdR(cos cos) +M= 0 (13.12)
) M=wR
2
2
(1 sin) + (
2
) cos
(13.13)
III De
ection aredeterminedlast
- Therealcurvatureis obtainedby dividingthemoment byEI
=
M
EI
=
wR
2
EI
2
(1 sin) + (
2
) cos
(13.14)
- ThevirtualforceP willbe a unitverticalpoint in thedirectionof thedesired
de
ection,causinga virtualinternalmoment
M=
R
2
[1 cos sin] 0
2
(13.15)
p
- Hence,applicationof thevirtualworkequationyields:
1
|{z}
P
= 2
Z
2
=0
wR
2
EI
2
(1 sin) + (
2
) cos
| {z }
M
EI
=
R
2
[1 cos sin]
| {z }
M
Rd
|{z}
dx
=
wR
4
16 EI
h
7
2
18 12
i
= : 0337
wR
4
EI
(13.16-a)
13.1.2 StaticallyIndeterminate
Example13-3: StaticallyIndeterminateArch, (Kinney1957)
Determinethevalueof thehorizontalreactioncomponent of theindicatedtwo-hingedsolid
ribarch, Fig. 13.8as causedby a concentratedverticalloadof 10k at thecenterlineof the
span.Considershearing,axial,and
exuralstrains.Assumethattheribis a W24x130witha
totalareaof 38.21in
2
, thatit hasa webareaof 13.70in
2
, a moment of inertiaequalto 4,000
in
4
,Eof 30,000k/in
2
, anda shearingmodulusGof 13,000k/in
2
.
Solution:
- ConsiderthatendCis placedonrollers,as shownin Fig.??A unitctitioushorizontal
forceis appliedatC. Theaxialandshearingcomponents of thisctitiousforceandof
theverticalreactionatC, actingonany sectionin theright halfof therib,areshown
at theright endof theribin Fig. 13-7.