Structural Engineering

(nextflipdebug5) #1

Draft


13.1Arches 217


Z


=0


wRd R(cos cos) +M= 0 (13.12)


) M=wR


2





2


(1sin) + (





2


) cos





(13.13)


III De
ection aredeterminedlast



  1. Therealcurvatureis obtainedby dividingthemoment byEI


=


M


EI


=


wR


2


EI





2


(1sin) + (





2


) cos





(13.14)



  1. ThevirtualforceP willbe a unitverticalpoint in thedirectionof thedesired


de
ection,causinga virtualinternalmoment


M=


R


2


[1cossin] 0 





2


(13.15)


p



  1. Hence,applicationof thevirtualworkequationyields:


1
|{z}

P


 = 2


Z
2

=0


wR


2


EI





2


(1sin) + (





2


) cos





| {z }


M
EI

=





R


2


[1cossin]


| {z }


M


Rd
|{z}

dx


=


wR


4


16 EI


h


7 


2
18  12

i


= : 0337


wR


4


EI


(13.16-a)


13.1.2 StaticallyIndeterminate


Example13-3: StaticallyIndeterminateArch, (Kinney1957)


Determinethevalueof thehorizontalreactioncomponent of theindicatedtwo-hingedsolid


ribarch, Fig. 13.8as causedby a concentratedverticalloadof 10k at thecenterlineof the


span.Considershearing,axial,and
exuralstrains.Assumethattheribis a W24x130witha


totalareaof 38.21in


2
, thatit hasa webareaof 13.70in

2
, a moment of inertiaequalto 4,000

in


4
,Eof 30,000k/in

2
, anda shearingmodulusGof 13,000k/in

2
.

Solution:



  1. ConsiderthatendCis placedonrollers,as shownin Fig.??A unit ctitioushorizontal


forceis appliedatC. Theaxialandshearingcomponents of this ctitiousforceandof


theverticalreactionatC, actingonany sectionin theright halfof therib,areshown


at theright endof theribin Fig. 13-7.

Free download pdf