Draft
13.1Arches 219
- Theexpressionforthehorizontaldisplacement ofCis
1
|{z}
P
Ch = 2
Z
B
C
M
M
EI
ds+ 2
Z
B
C
V
V
AwG
ds+ 2
Z
B
C
N
N
AE
ds (13.17)
- FromFig.13.9, fortheribfromCtoB,
M =
P
2
(100 Rcos) (13.18-a)
M = 1(Rsin 125 :36) (13.18-b)
V =
P
2
sin (13.18-c)
V = cos (13.18-d)
N =
P
2
cos (13.18-e)
N = sin (13.18-f)
ds = Rd (13.18-g)
- If theabove valuesaresubstitutedin Eq.13.17andintegratedbetweenthelimitsof 0.898
and=2, theresultwillbe
Ch= 22:55 + 0: 023 0 : 003 = 22: 57 (13.19)
- TheloadP is now assumedto be removedfromtherib,anda realhorizontalforceof
1 k is assumedto acttowardtheright atCin conjunctionwiththectitioushorizontal
forceof 1 k actingto theright at thesamepoint. Thehorizontaldisplacement ofCwill
be givenby
ChCh = 2
Z
B
C
M
M
EI
ds+ 2
Z
B
C
V
V
AwG
ds+ 2
Z
B
C
N
N
AE
ds (13.20-a)
= 2 : 309 + 0: 002 + 0: 002 = 2: 313 in (13.20-b)
- Thevalueof thehorizontalreactioncomponent willbe
HC=
Ch
ChCh
=
22 : 57
2 : 313
= 9.75k (13.21)
- If only
exuralstrainsareconsidered,theresultwouldbe
HC=
22 : 55
2 : 309
= 9.76k (13.22)
Comments
- For thegivenribandthesingleconcentratedloadat thecenterof thespanit is obvious
thattheeectsof shearingandaxialstrainsareinsignicant andcanbe disregarded.