Draft
13.2CurvedSpaceStructures 221
withrespectto thexandyaxisareBPandABrespectively. Applyingthreeequations
of equilibriumwe obtain
F
A
z
Z
=
=0
wRd= 0 ) F
A
z =wR (13.23-a)
M
A
x
Z
=
=0
(wRd)(Rsin) = 0 ) M
A
x = 2wR
2
(13.23-b)
M
A
y
Z
=
=0
(wRd)R(1 cos) = 0 ) M
A
y = wR
2
(13.23-c)
II InternalForcesaredeterminednext
- ShearForce:
(+ 6 ) Fz= 0)V
Z
0
wRd= 0) V=wr (13.24)
- BendingMoment:
MR= 0)M
Z
0
(wRd)(Rsin ) = 0) M=wR
2
(1 cos) (13.25)
- Torsion:
MT= 0)+
Z
0
(wRd)R(1 cos ) = 0) T= wR
2
( sin) (13.26)
III De
ection aredeterminedlastwe assumea rectangularcross-sectionof widthbandheight
d= 2banda Poisson'sratio= 0:3.
- Notingthatthemember willbe subjectedto both
exuralandtorsionaldeforma-
tions,we seekto determinethetwo stinesses.
- The
exuralstinessEIis givenbyEI=E
bd
3
12
=E
b(2b)
3
12
=
2 Eb
4
3
=: 667 Eb
4
.
- Thetorsionalstinessof solidrectangularsectionsJ=kb
3
dwherebis theshorter
sideof thesection,dthelonger,andka factorequalto .229for
d
b
= 2. Hence
G=
E
2(1+)
=
E
2(1+:3)
=: 385 E, andGJ= (: 385 E)(: 229 b
4
) =: 176 Eb
4
.
- Consideringboth
exuralandtorsionaldeformations,andreplacingdxbyrd:
P
|{z}
W
=
Z
0
M
M
EIz
Rd
| {z }
Flexure
Z
0
T
T
GJ
Rd
| {z }
Torsion
| {z }
U
(13.27)
wheretherealmoments weregivenabove.
- Assuminga unitvirtualdownwardforceP= 1, we have
M = Rsin (13.28-a)
T = R(1 cos) (13.28-b)