Structural Engineering

(nextflipdebug5) #1

Draft


13.2CurvedSpaceStructures 221


withrespectto thexandyaxisareBPandABrespectively. Applyingthreeequations


of equilibriumwe obtain


F


A
z

Z
=

=0


wRd= 0 ) F


A
z =wR (13.23-a)

M


A
x

Z
=

=0


(wRd)(Rsin) = 0 ) M


A
x = 2wR

2
(13.23-b)

M


A
y

Z
=

=0


(wRd)R(1cos) = 0 ) M


A
y =wR

2
 (13.23-c)

II InternalForcesaredeterminednext



  1. ShearForce:


(+ 6 ) Fz= 0)V


Z


0


wRd = 0) V=wr (13.24)



  1. BendingMoment:


MR= 0)M


Z


0


(wRd )(Rsin ) = 0) M=wR


2
(1cos) (13.25)


  1. Torsion:


MT= 0)+


Z


0


(wRd )R(1cos ) = 0) T=wR


2
(sin) (13.26)

III De
ection aredeterminedlastwe assumea rectangularcross-sectionof widthbandheight


d= 2banda Poisson'sratio= 0:3.



  1. Notingthatthemember willbe subjectedto both
    exuralandtorsionaldeforma-


tions,we seekto determinethetwo sti nesses.



  1. The
    exuralsti nessEIis givenbyEI=E


bd


3


12


=E


b(2b)


3


12


=


2 Eb


4


3


=: 667 Eb


4
.


  1. Thetorsionalsti nessof solidrectangularsectionsJ=kb


3
dwherebis theshorter

sideof thesection,dthelonger,andka factorequalto .229for


d


b


= 2. Hence


G=


E


2(1+)


=


E


2(1+:3)


=: 385 E, andGJ= (: 385 E)(: 229 b


4
) =: 176 Eb

4
.


  1. Consideringboth
    exuralandtorsionaldeformations,andreplacingdxbyrd:


P
|{z}

W





=


Z


0


M


M


EIz


Rd


| {z }


Flexure






Z


0


T


T


GJ


Rd


| {z }


Torsion
| {z }

U





(13.27)


wheretherealmoments weregivenabove.



  1. Assuminga unitvirtualdownwardforceP= 1, we have


M = Rsin (13.28-a)


T = R(1cos) (13.28-b)

Free download pdf