Structural Engineering

(nextflipdebug5) #1

Draft


13.1Arches 219



  1. Theexpressionforthehorizontaldisplacement ofCis


1
|{z}

P


Ch = 2


Z
B

C


M


M


EI


ds+ 2


Z
B

C


V


V


AwG


ds+ 2


Z
B

C


N


N


AE


ds (13.17)



  1. FromFig.13.9, fortheribfromCtoB,


M =


P


2


(100Rcos) (13.18-a)


M = 1(Rsin 125 :36) (13.18-b)


V =


P


2


sin (13.18-c)


V = cos (13.18-d)


N =


P


2


cos (13.18-e)


N = sin (13.18-f)


ds = Rd (13.18-g)



  1. If theabove valuesaresubstitutedin Eq.13.17andintegratedbetweenthelimitsof 0.898


and=2, theresultwillbe


Ch= 22:55 + 0: 023 0 : 003 = 22: 57 (13.19)



  1. TheloadP is now assumedto be removedfromtherib,anda realhorizontalforceof


1 k is assumedto acttowardtheright atCin conjunctionwiththe ctitioushorizontal


forceof 1 k actingto theright at thesamepoint. Thehorizontaldisplacement ofCwill


be givenby


ChCh = 2


Z
B

C


M


M


EI


ds+ 2


Z
B

C


V


V


AwG


ds+ 2


Z
B

C


N


N


AE


ds (13.20-a)


= 2 : 309 + 0: 002 + 0: 002 = 2: 313 in (13.20-b)



  1. Thevalueof thehorizontalreactioncomponent willbe


HC=


Ch


ChCh


=


22 : 57


2 : 313


= 9.75k (13.21)



  1. If only
    exuralstrainsareconsidered,theresultwouldbe


HC=


22 : 55


2 : 309


= 9.76k (13.22)


Comments



  1. For thegivenribandthesingleconcentratedloadat thecenterof thespanit is obvious


thatthee ectsof shearingandaxialstrainsareinsigni cant andcanbe disregarded.

Free download pdf