138 III More on Divisibility
by Dirichlet’s convergence criterion in the theory of Fourier series,
{F(+ 0 )+F(− 0 )}/ 2 = lim
N→∞∑N
h=−N∫ 1
0e−^2 πihtF(t)dt.But
∫ 1
0e−^2 πihtF(t)dt=∑∞
k=−∞∫ 1
0e−^2 πihtf(t+k)dt=
∑∞
k=−∞∫k+ 1ke−^2 πihtf(t)dt=∫n0e−^2 πihtf(t)dt.Thus we obtain
f( 0 )/ 2 +f( 1 )+···+f(n− 1 )+f(n)/ 2 = lim
N→∞∑N
h=−N∫n0e−^2 πihtf(t)dt. (∗)This is a simple form ofPoisson’s summation formula(which makes an appearance
also in Chapters IX and X).
In particular, if we takef(t)=e^2 πit(^2) m/n
( 0 ≤t≤n),wheremis also a positive
integer, then the left side of(∗)is just the Gauss sumG(m,n). We will now evaluate
the right side of(∗)for this case. Puth= 2 mq+μ,whereqandμare integers and
0 ≤μ< 2 m.Then
e−^2 πihtf(t)=e^2 πim(t−nq)
(^2) /n
e−^2 πiμt.
Ashruns through all the integers,qdoes also andμruns independently through the
integers 0,..., 2 m−1. Hence
lim
N→∞
∑N
h=−N∫n0e−^2 πihtf(t)dt=(^2) ∑m− 1
μ= 0
lim
Q→∞
∑Q
q=−Q∫n0e^2 πim(t−nq)(^2) /n
e−^2 πiμtdt
=
(^2) ∑m− 1
μ= 0
lim
Q→∞
∑Q
q=−Q∫−(q− 1 )n−qne^2 πit(^2) m/n
e−^2 πiμtdt
=
(^2) ∑m− 1
μ= 0
∫∞
−∞e^2 πit(^2) m/n
e−^2 πiμtdt
=
(^2) ∑m− 1
μ= 0
∫∞
−∞e^2 πim(t−μn/^2 m)(^2) /n
e−πiμ
(^2) n/ 2 m
dt
=
(^2) ∑m− 1
μ= 0
e−πiμ
(^2) n/ 2 m
∫∞
−∞e^2 πit(^2) m/n
dt
=
√
n
mC
(^2) ∑m− 1
μ= 0
e−πiμ
(^2) n/ 2 m
,