1 The Law of Quadratic Reciprocity 139
whereCis theFresnel integral
C=
∫∞
−∞
e^2 πit
2
dt.
(This is an important example of an infinite integral which converges, although the
integrand does not tend to zero.) From(∗)we now obtain the formula forG(m,n)in
the statement of the proposition. To determine the value of the constantC,takem=1,
n=3. We obtaini
√
3 =
√
3 C( 1 +i), which simplifies toC=( 1 +i)/2.
From Proposition 10 withm=1 we obtain
G( 1 ,n)=
n∑− 1
v= 0
e^2 πiv
(^2) /n
⎧
⎪⎪
⎪⎨
⎪⎪
⎪⎩
( 1 +i)
√
n ifn≡ 0 (mod 4),
√
n ifn≡ 1 (mod 4),
0ifn≡ 2 (mod 4),
i
√
n ifn≡ 3 (mod 4).
Ifmandnare both odd, it follows that
G( 1 ,mn)=G( 1 ,m)G( 1 ,n) if eitherm≡1orn≡1mod4,
=−G( 1 ,m)G( 1 ,n) ifm≡n≡3mod4;
i.e.
G( 1 ,mn)=(− 1 )(m−^1 )(n−^1 )/^4 G( 1 ,m)G( 1 ,n).
If, in addition,mandnare relatively prime, thenG(m,n)G(n,m)=G( 1 ,mn),by
Proposition 9. Hence, if the integersm,nare odd, positive and relatively prime, then
G(m,n)G(n,m)=(− 1 )(m−^1 )(n−^1 )/^4 G( 1 ,m)G( 1 ,n).
For any odd, positive relatively prime integersm,n, put
ρ(m,n)=G(m,n)/G( 1 ,n).
Then
ρ( 1 ,n)= 1 ,
ρ(m,n)=ρ(m′,n) ifm≡m′modn,
ρ(m,n)ρ(n,m)=(− 1 )(m−^1 )(n−^1 )/^4.
We claim thatρ(m,n)is just the Jacobi symbol(m/n). This is evident ifm=1 and,
by Proposition 2(i), ifρ(m,n)=(m/n),thenalsoρ(n,m)=(n/m).
Hence if the claim is not true for allm,n,thereisapairm,nwith 1<m<nsuch
that
ρ(m,n)=(m/n),
butρ(μ,v)=(μ/v)for all odd, positive relatively prime integersμ,vwithμ<m.
We can writen=km+rfor some positive integersk,rwithr<m.