1 The Law of Quadratic Reciprocity 139whereCis theFresnel integral
C=
∫∞
−∞e^2 πit2
dt.(This is an important example of an infinite integral which converges, although the
integrand does not tend to zero.) From(∗)we now obtain the formula forG(m,n)in
the statement of the proposition. To determine the value of the constantC,takem=1,
n=3. We obtaini
√
3 =
√
3 C( 1 +i), which simplifies toC=( 1 +i)/2. From Proposition 10 withm=1 we obtainG( 1 ,n)=n∑− 1v= 0e^2 πiv(^2) /n
⎧
⎪⎪
⎪⎨
⎪⎪
⎪⎩
( 1 +i)√
n ifn≡ 0 (mod 4),
√
n ifn≡ 1 (mod 4),
0ifn≡ 2 (mod 4),
i√
n ifn≡ 3 (mod 4).Ifmandnare both odd, it follows that
G( 1 ,mn)=G( 1 ,m)G( 1 ,n) if eitherm≡1orn≡1mod4,
=−G( 1 ,m)G( 1 ,n) ifm≡n≡3mod4;i.e.
G( 1 ,mn)=(− 1 )(m−^1 )(n−^1 )/^4 G( 1 ,m)G( 1 ,n).If, in addition,mandnare relatively prime, thenG(m,n)G(n,m)=G( 1 ,mn),by
Proposition 9. Hence, if the integersm,nare odd, positive and relatively prime, then
G(m,n)G(n,m)=(− 1 )(m−^1 )(n−^1 )/^4 G( 1 ,m)G( 1 ,n).For any odd, positive relatively prime integersm,n, putρ(m,n)=G(m,n)/G( 1 ,n).Then
ρ( 1 ,n)= 1 ,
ρ(m,n)=ρ(m′,n) ifm≡m′modn,
ρ(m,n)ρ(n,m)=(− 1 )(m−^1 )(n−^1 )/^4.We claim thatρ(m,n)is just the Jacobi symbol(m/n). This is evident ifm=1 and,
by Proposition 2(i), ifρ(m,n)=(m/n),thenalsoρ(n,m)=(n/m).
Hence if the claim is not true for allm,n,thereisapairm,nwith 1<m<nsuch
that
ρ(m,n)=(m/n),butρ(μ,v)=(μ/v)for all odd, positive relatively prime integersμ,vwithμ<m.
We can writen=km+rfor some positive integersk,rwithr<m.