Number Theory: An Introduction to Mathematics

(ff) #1

138 III More on Divisibility


by Dirichlet’s convergence criterion in the theory of Fourier series,


{F(+ 0 )+F(− 0 )}/ 2 = lim
N→∞

∑N


h=−N

∫ 1


0

e−^2 πihtF(t)dt.

But
∫ 1


0

e−^2 πihtF(t)dt=

∑∞


k=−∞

∫ 1


0

e−^2 πihtf(t+k)dt

=


∑∞


k=−∞

∫k+ 1

k

e−^2 πihtf(t)dt=

∫n

0

e−^2 πihtf(t)dt.

Thus we obtain


f( 0 )/ 2 +f( 1 )+···+f(n− 1 )+f(n)/ 2 = lim
N→∞

∑N


h=−N

∫n

0

e−^2 πihtf(t)dt. (∗)

This is a simple form ofPoisson’s summation formula(which makes an appearance
also in Chapters IX and X).


In particular, if we takef(t)=e^2 πit

(^2) m/n
( 0 ≤t≤n),wheremis also a positive
integer, then the left side of(∗)is just the Gauss sumG(m,n). We will now evaluate
the right side of(∗)for this case. Puth= 2 mq+μ,whereqandμare integers and
0 ≤μ< 2 m.Then
e−^2 πihtf(t)=e^2 πim(t−nq)
(^2) /n
e−^2 πiμt.
Ashruns through all the integers,qdoes also andμruns independently through the
integers 0,..., 2 m−1. Hence
lim
N→∞


∑N


h=−N

∫n

0

e−^2 πihtf(t)dt=

(^2) ∑m− 1
μ= 0
lim
Q→∞


∑Q


q=−Q

∫n

0

e^2 πim(t−nq)

(^2) /n
e−^2 πiμtdt


=


(^2) ∑m− 1
μ= 0
lim
Q→∞


∑Q


q=−Q

∫−(q− 1 )n

−qn

e^2 πit

(^2) m/n
e−^2 πiμtdt


=


(^2) ∑m− 1
μ= 0


∫∞


−∞

e^2 πit

(^2) m/n
e−^2 πiμtdt


=


(^2) ∑m− 1
μ= 0


∫∞


−∞

e^2 πim(t−μn/^2 m)

(^2) /n
e−πiμ
(^2) n/ 2 m
dt


=


(^2) ∑m− 1
μ= 0
e−πiμ
(^2) n/ 2 m


∫∞


−∞

e^2 πit

(^2) m/n
dt


=



n
m

C


(^2) ∑m− 1
μ= 0
e−πiμ
(^2) n/ 2 m
,

Free download pdf