Number Theory: An Introduction to Mathematics

(ff) #1

222 IV Continued Fractions and Their Uses


[47] W.M. Schmidt,Diophantine approximation, Lecture Notes in Mathematics 785 , Springer-
Verlag, Berlin, 1980.
[48] W.M. Schmidt, On continued fractions and diophantine approximation in power series
fields,Acta Arith. 95 (2000), 139–166.
[49] C.-O. Selenius, Rationale of the chakravala process of Jayadeva and Bhaskara II,Historia
Math. 2 (1975), 167–184.
[50] J.-P. Serre,Lectures on the Mordell–Weil theorem, English transl. by M. Brown from notes
by M. Waldschmidt, Vieweg & Sohn, Braunschweig, 1989.
[51] J.A. Serret, Developpements sur une classe d’ ́equations,J. Math. Pures Appl. 15 (1850),
152–168.
[52] J. Shallit, Real numberswith bounded partial quotients,Enseign. Math. 38 (1992),
151–187.
[53] M. Sheingorn, Continued fractions and congruence subgroup geodesics,Number theory
with an emphasis on the Markoff spectrum(ed. A.D. Pollington and W. Moran), pp. 239–
254, Lecture Notes in Pure and Applied Mathematics 147 , Dekker, New York, 1993.
[54] C.L. Siegel, Symplectic geometry,Amer. J. Math. 65 (1943), 1–86. [Gesammelte
Abhandlungen, Band II,pp. 274–359, Springer-Verlag, Berlin, 1966.]
[55] B. Simon, The classical moment problem as a self-adjoint finite difference operator,Adv.
in Math. 137 (1998), 82–203.
[56] H.M. Stark, Dirichlet’s class-number formula revisited,A tribute to Emil Grosswald:
Number theory and related analysis(ed. M. Knopp and M. Sheingorn), pp. 571–577,
Contemporary Mathematics 143 , Amer. Math. Soc., Providence, R.I., 1993.
[57] S.A. Stepanov, Arithmetic of algebraic curves, English transl. by I. Aleksanova,
Consultants Bureau, New York, 1994.
[58] E.B. Vinberg and O.V. Shvartsman,Discrete groups of motions of spaces of constant
curvature, Geometry II, pp. 139–248, Encyclopaedia of Mathematical Sciences Vol. 29,
Springer-Verlag, Berlin, 1993.
[59] P. Vojta,Diophantine approximations and value distribution theory, Lecture Notes
in Mathematics 1239 , Springer-Verlag, Berlin, 1987.
[60] P. Vojta, A generalization of theorems of Faltings and Thue–Siegel–Roth–Wirsing,
J. Amer. Math. Soc. 5 (1992), 763–804.
[61] S. Wagon, The Euclidean algorithm strikes again,Amer. Math. Monthly 97 (1990),
125–129.
[62] J.-C. Yoccoz, Th ́eor`eme de Siegel, nombres de Bruno et polyn ˆomes quadratiques,
Ast ́erisque 231 (1995), 3–88.
[63] D.B. Zagier,Zetafunktionen und quadratische K ̈orper, Springer-Verlag, Berlin, 1981.


AdditionalReferences


M. Laczkovich, On Lambert’s proof of the irrationality ofπ,Amer. Math. Monthly 104 (1997),
439–443.
Anitha Srinivasan, A really simple proof of the Markoff conjecture for prime powers,Preprint.

Free download pdf