Number Theory: An Introduction to Mathematics

(ff) #1

376 IX The Number of Prime Numbers


By the ‘Riemann–Lebesgue lemma’,χ(y)→0asy→∞. In fact this may be
proved in the following way. We have


χ(y)=

∫∞


−∞

eiλtyω(t)dt

where


ω(t)=λk(t)γ(λt).

Changing the variable of integration tot+π/λy, we obtain


χ(y)=−

∫∞


−∞

eiλtyω(t+π/λy)dt.

Hence


2 χ(y)=

∫∞


−∞

eiλty{ω(t)−ω(t+π/λy)}dt

and


2 |χ(y)|≤

∫∞


−∞

|ω(t)−ω(t+π/λy)|dt.

Sinceω(t)is continuous and vanishes outside a finite interval, it follows that
χ(y)→0asy→∞.
Since
∫λy


−∞

kˆ(v)dv→C asy→∞,

we deduce that


lim
y→∞

=


∫λy

−∞

α(y−v/λ)kˆ(v)dv=AC for everyλ> 0.

We now make use of the fact thatehxα(x)is a nondecreasing function. Choose any
δ∈( 0 , 1 ).Ify=x+δ,wherex≥0, then for|v|≤λδ


α(y−v/λ)≥e−h(δ−v/λ)α(x)≥e−^2 hδα(x)

and hence
∫λy


−∞

α(y−v/λ)kˆ(v)dv≥e−^2 hδα(x)

∫λδ

−λδ

kˆ(v)dv.

We can chooseλ=λ(δ)so large that the integral on the right exceeds( 1 −δ)C. Then,
lettingx→∞we obtain


AC≥e−^2 hδ( 1 −δ)C lim
x→∞
α(x).
Free download pdf