376 IX The Number of Prime Numbers
By the ‘Riemann–Lebesgue lemma’,χ(y)→0asy→∞. In fact this may be
proved in the following way. We have
χ(y)=
∫∞
−∞
eiλtyω(t)dt
where
ω(t)=λk(t)γ(λt).
Changing the variable of integration tot+π/λy, we obtain
χ(y)=−
∫∞
−∞
eiλtyω(t+π/λy)dt.
Hence
2 χ(y)=
∫∞
−∞
eiλty{ω(t)−ω(t+π/λy)}dt
and
2 |χ(y)|≤
∫∞
−∞
|ω(t)−ω(t+π/λy)|dt.
Sinceω(t)is continuous and vanishes outside a finite interval, it follows that
χ(y)→0asy→∞.
Since
∫λy
−∞
kˆ(v)dv→C asy→∞,
we deduce that
lim
y→∞
=
∫λy
−∞
α(y−v/λ)kˆ(v)dv=AC for everyλ> 0.
We now make use of the fact thatehxα(x)is a nondecreasing function. Choose any
δ∈( 0 , 1 ).Ify=x+δ,wherex≥0, then for|v|≤λδ
α(y−v/λ)≥e−h(δ−v/λ)α(x)≥e−^2 hδα(x)
and hence
∫λy
−∞
α(y−v/λ)kˆ(v)dv≥e−^2 hδα(x)
∫λδ
−λδ
kˆ(v)dv.
We can chooseλ=λ(δ)so large that the integral on the right exceeds( 1 −δ)C. Then,
lettingx→∞we obtain
AC≥e−^2 hδ( 1 −δ)C lim
x→∞
α(x).