3 Proof of the Prime Number Theorem for Arithmetic Progressions 4033 Proof of the Prime Number Theorem for Arithmetic Progressions
The finite abelian group in which we are interested is the multiplicative groupZ×(m)of
integers relatively prime tom,wherem>1 will be fixed from now on. The group
Gm =Z×(m)has orderφ(m),whereφ(m)denotes as usual the number of positive
integers less thanmand relatively prime tom.
ADirichlet charactermodmis defined to be a functionχ :Z→Cwith the
properties
(i)χ(ab)=χ(a)χ(b)for alla,b∈Z,
(ii)χ(a)=χ(b)ifa≡bmodm,
(iii)χ(a)=0 if and only if(a,m)=1.
Any characterχofGmcan be extended to a Dirichlet character modmby putting
χ(a)=0ifa ∈Zand(a,m)=1. Conversely, on account of (ii), any Dirichlet
character modmuniquely determines a character ofGm.
To illustrate the definition, here are some examples of Dirichlet characters. In each
case we setχ(a)=0if(a,m)=1.
(I)m=pis an odd prime andχ(a)=(a/p)ifpa,where(a/p)is the Legendre
symbol;
(II)m=4andχ(a)=1or−1 according asa≡1or−1 mod 4;
(III)m=8andχ(a)=1or−1 according asa≡±1or±3 mod 8.
We now return to the general case. By the results of the previous section we have∑mn= 1χ(n)≡{
φ(m) ifχ=χ 1 ,
0ifχ=χ 1 ,and
∑χχ(a)={
φ(m) ifa≡1modm,
0otherwise,whereχruns through all Dirichlet characters modm.Furthermore
∑mn= 1χ(n)ψ(n)={
φ(m) ifχ=ψ,
0ifχ=ψ,and
∑χχ(a)χ( ̄b)={
φ(m) if(a,m)=1anda≡bmodm,
0otherwise.Lemma 3If χ = χ 1 is a Dirichlet charactermodm then, for any positive
integer N ,
∣
∣
∣
∣∑N
n= 1χ(n)∣
∣
∣
∣≤φ(m)/^2.