156 GEOMETRY AND TRIGONOMETRY
Problem 11. Sketch y=2 cos(ωt− 3 π/10)
over one cycle.
Amplitude=2; period= 2 π/ωrad.
2 cos(ωt− 3 π/10) lags 2 cosωtby 3π/ 10 ωseconds.
A sketch of y=2 cos(ωt− 3 π/10) is shown in
Fig. 15.24.
Figure 15.24
Graphs of sin^2 Aand cos^2 A
(i) A graph ofy=sin^2 Ais shown in Fig. 15.25
using the following table of values.
A◦ sinA (sin A)^2 =sin^2 A
00 0
30 0.50 0.25
60 0.866 0.75
90 1.0 1.0
120 0.866 0.75
150 0.50 0.25
180 0 0
210 −0.50 0.25
240 −0.866 0.75
270 −1.0 1.0
300 −0.866 0.75
330 −0.50 0.25
360 0 0
(ii) A graph ofy=cos^2 Ais shown in Fig. 15.26
obtained by drawing up a table of values, similar
to above.
(iii)y=sin^2 A and y=cos^2 A are both periodic
functions of period 180◦(orπrad) and both
Figure 15.25
Figure 15.26
contain only positive values. Thus a graph of
y=sin^22 Ahas a period 180◦/2, i.e., 90◦. Simi-
larly, a graph ofy=4 cos^23 Ahas a maximum
value of 4 and a period of 180◦/3, i.e. 60◦.
Problem 12. Sketchy=3 sin^212 Ain the range
0 <A< 360 ◦.
Maximum value=3; period= 180 ◦/(1/2)= 360 ◦.
A sketch of 3 sin^212 Ais shown in Fig. 15.27.
Figure 15.27
Problem 13. Sketch y=7 cos^22 A between
A= 0 ◦andA= 360 ◦.
Maximum value=7; period= 180 ◦/ 2 = 90 ◦.
A sketch ofy=7 cos^22 Ais shown in Fig. 15.28.