B
Geometry and trigonometry
17
The relationship between trigonometric
and hyperbolic functions
17.1 The relationship between
trigonometric and hyperbolic
functions
In Chapter 24, it is shown that
cosθ+jsinθ=ejθ (1)and cosθ−jsinθ=e−jθ (2)
Adding equations (1) and (2) gives:
cosθ=1
2(ejθ+e−jθ) (3)Subtracting equation (2) from equation (1) gives:
sinθ=1
2 j(ejθ−e−jθ) (4)Substitutingjθforθin equations (3) and (4) gives:
cosjθ=1
2(ej(jθ)+e−j(jθ))and sinjθ=1
2 j(ej(jθ)−e−j(jθ))Sincej^2 =−1, cosjθ=^12 (e−θ+eθ)=^12 (eθ+e−θ)
Hence from Chapter 5,cosjθ=coshθ (5)
Similarly, sinjθ=
1
2 j(e−θ−eθ)=−1
2 j(eθ−e−θ)=− 1
j[
1
2(eθ−e−θ)]=−1
jsinhθ (see Chapter 5)But −1
j=−1
j×j
j=−j
j^2=j,hence sinjθ=jsinhθ (6)Equations (5) and (6) may be used to verify that in all
standard trigonometric identities,jθmay be written
forθand the identity still remains true.Problem 1. Verify that cos^2 jθ+sin^2 jθ=1.From equation (5), cosjθ=coshθ, and from equa-
tion (6), sinjθ=jsinhθ.Thus, cos^2 jθ+sin^2 jθ=cosh^2 θ+j^2 sinh^2 θ, and
sincej^2 =−1,cos^2 jθ+sin^2 jθ=cosh^2 θ−sinh^2 θBut from Chapter 5, Problem 6,cosh^2 θ−sinh^2 θ=1,hence cos^2 jθ+sin^2 jθ = 1Problem 2. Verify that sinj 2 A=2 sinjAcosjA.From equation (6), writing 2Aforθ,
sinj 2 A=jsinh 2A, and from Chapter 5, Table 5.1,
page 45, sinh 2A=2 sinhAcoshA.Hence, sinj 2 A= j(2 sinhAcoshA)But, sinhA=^12 (eA−e−A) and coshA=^12 (eA+e−A)Hence, sinj 2 A=j 2(
eA−e−A
2)(
eA+e−A
2)=−2
j(
eA−e−A
2)(
eA+e−A
2)