174 GEOMETRY AND TRIGONOMETRY=−2
j(
sinjθ
j)
( cosjθ)=2 sinjAcosjA sincej^2 =− 1i.e. sinj 2 A=2 sinjAcosjANow try the following exercise.Exercise 78 Further problems on the rela-
tionship between trigonometric and hyper-
bolic functionsVerify the following identities by expressing in
exponential form.- sinj(A+B)=sinjAcosjB+cosjAsinjB
- cosj(A−B)=cosjAcosjB+sinjAsinjB
- cosj 2 A= 1 −2 sin^2 jA
- sinjAcosjB=^12 [ sinj(A+B)+sinj(A−B)]
- sinjA−sinjB
=2 cosj(
A+B
2)
sinj(
A−B
2)17.2 Hyperbolic identities
From Chapter 5, coshθ=^12 (eθ+e−θ)Substitutingjθforθgives:coshjθ=^12 (ejθ+e−jθ)=cosθ, from equation (3),i.e. coshjθ=cosθ (7)Similarly, from Chapter 5,sinhθ=^12 (eθ−e−θ)Substitutingjθforθgives:sinhjθ=^12 (ejθ−e−jθ)=jsinθ, from equation (4).Hence sinhjθ= jsinθ (8)tanjθ=sinjθ
coshjθFrom equations (5) and (6),sinjθ
cosjθ=jsinhθ
coshθ=jtanhθHence tanjθ=jtanhθ (9)Similarly, tanhjθ=sinhjθ
coshjθFrom equations (7) and (8),sinhjθ
coshjθ=jsinθ
cosθ=jtanθHence tanhjθ=jtanθ (10)Two methods are commonly used to verify hyper-
bolic identities. These are (a) by substitutingjθ(and
jφ) in the corresponding trigonometric identity and
using the relationships given in equations (5) to (10)
(see Problems 3 to 5) and (b) by applying Osborne’s
rule given in Chapter 5, page 44.Problem 3. By writingjAforθin
cot^2 θ+ 1 =cosec^2 θ, determine the
corresponding hyperbolic identity.SubstitutingjAforθgives:cot^2 jA+ 1 =cosec^2 jA,i.e.cos^2 jA
sin^2 jA+ 1 =1
sin^2 jABut from equation (5), cosjA=coshAand from equation (6), sinjA=jsinhA.Hencecosh^2 A
j^2 sinh^2 A+ 1 =1
j^2 sinh^2 Aand since j^2 =−1,−cosh^2 A
sinh^2 A+ 1 =−1
sinh^2 A
Multiplying throughout by−1, gives:cosh^2 A
sinh^2 A− 1 =1
sinh^2 Ai.e. coth^2 A− 1 =cosech^2 AProblem 4. By substituting jAand jBforθ
andφrespectively in the trigonometric identity
for cosθ−cosφ, show thatcoshA−coshB=2 sinh(
A+B
2)
sinh(
A−B
2)