COMPOUND ANGLES 177
B
Hence tan
(
x+
π
4
)
tan
(
x−
π
4
)
=
(
1 +tanx
1 −tanx
)(
tanx− 1
1 +tanx
)
=
tanx− 1
1 −tanx
=
−(1−tanx)
1 −tanx
=− 1
Problem 4. If sinP= 0 .8142 and cosQ=
0 .4432 evaluate, correct to 3 decimal places:
(a) sin(P−Q), (b) cos(P+Q) and
(c) tan(P+Q), using the compound-angle
formulae.
Since sinP= 0 .8142 then
P=sin−^10. 8142 = 54. 51 ◦.
Thus cosP=cos 54. 51 ◦= 0 .5806 and
tanP=tan 54. 51 ◦= 1 .4025.
Since cosQ= 0 .4432,Q=cos−^10. 4432 = 63. 69 ◦.
Thus sinQ=sin 63. 69 ◦= 0 .8964 and
tanQ=tan 63. 69 ◦= 2 .0225.
(a) sin (P−Q)
=sinPcosQ−cosPsinQ
=(0.8142)(0.4432)−(0.5806)(0.8964)
= 0. 3609 − 0. 5204 =− 0. 160
(b) cos (P+Q)
=cosPcosQ−sinPsinQ
=(0.5806)(0.4432)−(0.8142)(0.8964)
= 0. 2573 − 0. 7298 =− 0. 473
(c) tan (P+Q)
=
tanP+tanQ
1 −tanPtanQ
=
(1.4025)+(2.0225)
1 −(1.4025)(2.0225)
=
3. 4250
− 1. 8366
=− 1. 865
Problem 5. Solve the equation
4 sin(x− 20 ◦)=5 cosx
for values ofxbetween 0◦and 90◦.
4 sin(x− 20 ◦)=4[sinxcos 20◦−cosxsin 20◦],
from the formula for sin(A−B)
=4[sinx(0.9397)−cosx(0.3420)]
= 3 .7588 sinx− 1 .3680 cosx
Since 4 sin (x− 20 ◦)=5 cosxthen
3 .7588 sinx− 1 .3680 cosx=5 cosx
Rearranging gives:
3 .7588 sinx=5 cosx+ 1 .3680 cosx
= 6 .3680 cosx
and
sinx
cosx
=
6. 3680
3. 7588
= 1. 6942
i.e. tanx= 1 .6942, andx=tan−^11. 6942 = 59. 449 ◦
or 59 ◦ 27 ′
[Check: LHS=4 sin (59. 449 ◦− 20 ◦)
=4 sin 39. 449 ◦= 2. 542
RHS=5 cosx=5 cos 59. 449 ◦= 2 .542]
Now try the following exercise.
Exercise 80 Further problems on com-
pound angle formulae
- Reduce the following to the sine of one
angle:
(a) sin 37◦cos 21◦+cos 37◦sin 21◦
(b) sin 7tcos 3t−cos 7tsin 3t
[(a) sin 58◦ (b) sin 4t]
- Reduce the following to the cosine of one
angle:
(a) cos 71◦cos 33◦−sin 71◦sin 33◦
(b) cos
π
3
cos
π
4
+sin
π
3
sin
π
4
[(a) cos 104◦≡−cos 76◦
(b) cos
π
12
]
- Show that:
(a) sin
(
x+
π
3
)
+sin
(
x+
2 π
3
)
=
√
3 cosx
and
(b)−sin
(
3 π
2
−φ
)
=cosφ
- Prove that:
(a) sin
(
θ+
π
4
)
−sin
(
θ−
3 π
4
)
=
√
2( sinθ+cosθ)
(b)
cos (270◦+θ)
cos (360◦−θ)
=tanθ