Geometry and trigonometry
18
Compound angles
18.1 Compound angle formulae
An electric currentimay be expressed as
i = 5 sin(ωt− 0 .33) amperes. Similarly, the dis-
placementx of a body from a fixed point can
be expressed asx=10 sin(2t+ 0 .67) metres. The
angles (ωt− 0 .33) and (2t+ 0 .67) are calledcom-
pound anglesbecause they are the sum or difference
of two angles. Thecompound angle formulaefor
sines and cosines of the sum and difference of two
anglesAandBare:
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB−cosAsinB
cos(A+B)=cosAcosB−sinAsinB
cos(A−B)=cosAcosB+sinAsinB
(Note, sin(A+B)isnotequal to (sinA+sinB), and
so on.)
The formulae stated above may be used to derive two
further compound angle formulae:tan(A+B)=tanA+tanB
1 −tanAtanBtan(A−B)=tanA−tanB
1 +tanAtanB
The compound-angle formulae are true for all values
ofAandB, and by substituting values ofAandBinto
the formulae they may be shown to be true.Problem 1. Expand and simplify the following
expressions:
(a) sin(π+α) (b)−cos(90◦+β)
(c) sin(A−B)−sin(A+B)(a) sin(π+α)=sinπcosα+cosπsinα(from
the formula for sin (A+B))
=(0)(cosα)+(−1) sinα=−sinα
(b)−cos (90◦+β)
=−[cos 90◦cosβ−sin 90◦sinβ]
=−[(0)(cosβ)−(1) sinβ]=sinβ(c) sin(A−B)−sin(A+B)
=[sinAcosB−cosAsinB]
−[sinAcosB+cosAsinB]
=−2cos A sin BProblem 2. Prove thatcos(y−π)+sin(
y+π
2)
= 0.cos (y−π)=cosycosπ+sinysinπ
=(cosy)(−1)+(siny)(0)
=−cosysin(
y+π
2)
=sinycosπ
2+cosysinπ
2
=(siny)(0)+(cosy)(1)=cosyHence cos(y−π)+sin(
y+π
2)=(−cosy)+(cosy)= 0Problem 3. Show thattan(
x+π
4)
tan(
x−π
4)
=− 1.tan(
x+π
4)
=tanx+tanπ 4
1 −tanxtanπ 4from the formula for tan(A+B)=tanx+ 1
1 −(tanx)(1)=(
1 +tanx
1 −tanx)since tanπ
4= 1tan(
x−π
4)
=tanx−tanπ
4
1 +tanxtanπ
4=(
tanx− 1
1 +tanx)