182 GEOMETRY AND TRIGONOMETRY
18.3 Double angles
(i) If, in the compound-angle formula for
sin(A+B), we letB=Athen
sin 2A=2 sinAcosA
Also, for example,
sin 4A=2 sin 2Acos 2A
and sin 8A=2 sin 4Acos 4A, and so on.
(ii) If, in the compound-angle formula for
cos(A+B), we letB=Athen
cos 2A=cos^2 A−sin^2 A
Since cos^2 A+sin^2 A=1, then
cos^2 A= 1 −sin^2 A, and sin^2 A= 1 −cos^2 A,
and two further formula for cos 2A can be
produced.
Thus cos 2A=cos^2 A−sin^2 A
=(1−sin^2 A)−sin^2 A
i.e. cos 2A= 1 −2 sin^2 A
and cos 2A=cos^2 A−sin^2 A
=cos^2 A−(1−cos^2 A)
i.e. cos 2A=2cos^2 A− 1
Also, for example,
cos 4A=cos^22 A−sin^22 A or
1 −2 sin^22 Aor
2 cos^22 A− 1
and cos 6A=cos^23 A−sin^23 A or
1 −2 sin^23 Aor
2 cos^23 A−1,
and so on.
(iii) If, in the compound-angle formula for
tan(A+B), we letB=Athen
tan 2A=
2 tanA
1 −tan^2 A
Also, for example,
tan 4A=
2 tan 2A
1 −tan^22 A
and tan 5A=
2 tan^52 A
1 −tan^252 A
and so on.
Problem 11. I 3 sin 3θis the third harmonic of a
waveform. Express the third harmonic in terms
of the first harmonic sinθ, whenI 3 =1.
WhenI 3 =1,
I 3 sin 3θ=sin 3θ=sin (2θ+θ)
=sin 2θcosθ+cos 2θsinθ,
from the sin (A+B) formula
=(2 sinθcosθ) cosθ+(1−2 sin^2 θ) sinθ,
from the double angle expansions
=2 sinθcos^2 θ+sinθ−2 sin^3 θ
=2 sinθ(1−sin^2 θ)+sinθ−2 sin^3 θ,
(since cos^2 θ= 1 −sin^2 θ)
=2 sinθ−2 sin^3 θ+sinθ−2 sin^3 θ
i.e.sin 3θ=3 sinθ−4 sin^3 θ
Problem 12. Prove that
1 −cos 2θ
sin 2θ
=tanθ.
LHS=
1 −cos 2θ
sin 2θ
=
1 −(1−2 sin^2 θ)
2 sinθcosθ
=
2 sin^2 θ
2 sinθcosθ
=
sinθ
cosθ
=tanθ=RHS
Problem 13. Prove that
cot 2x+cosec 2x=cotx.
LHS=cot 2x+cosec 2x=
cos 2x
sin 2x
+
1
sin 2x
=
cos 2x+ 1
sin 2x
=
(2 cos^2 x−1)+ 1
sin 2x
=
2 cos^2 x
sin 2x
=
2 cos^2 x
2 sinxcosx
=
cosx
sinx
=cotx=RHS