182 GEOMETRY AND TRIGONOMETRY18.3 Double angles
(i) If, in the compound-angle formula for
sin(A+B), we letB=Athensin 2A=2 sinAcosAAlso, for example,
sin 4A=2 sin 2Acos 2A
and sin 8A=2 sin 4Acos 4A, and so on.
(ii) If, in the compound-angle formula for
cos(A+B), we letB=Athencos 2A=cos^2 A−sin^2 ASince cos^2 A+sin^2 A=1, then
cos^2 A= 1 −sin^2 A, and sin^2 A= 1 −cos^2 A,
and two further formula for cos 2A can be
produced.Thus cos 2A=cos^2 A−sin^2 A
=(1−sin^2 A)−sin^2 Ai.e. cos 2A= 1 −2 sin^2 Aand cos 2A=cos^2 A−sin^2 A=cos^2 A−(1−cos^2 A)i.e. cos 2A=2cos^2 A− 1
Also, for example,cos 4A=cos^22 A−sin^22 A or1 −2 sin^22 Aor2 cos^22 A− 1and cos 6A=cos^23 A−sin^23 A or1 −2 sin^23 Aor2 cos^23 A−1,
and so on.(iii) If, in the compound-angle formula for
tan(A+B), we letB=Athen
tan 2A=2 tanA
1 −tan^2 A
Also, for example,tan 4A=2 tan 2A
1 −tan^22 Aand tan 5A=2 tan^52 A
1 −tan^252 Aand so on.Problem 11. I 3 sin 3θis the third harmonic of a
waveform. Express the third harmonic in terms
of the first harmonic sinθ, whenI 3 =1.WhenI 3 =1,
I 3 sin 3θ=sin 3θ=sin (2θ+θ)
=sin 2θcosθ+cos 2θsinθ,
from the sin (A+B) formula=(2 sinθcosθ) cosθ+(1−2 sin^2 θ) sinθ,
from the double angle expansions=2 sinθcos^2 θ+sinθ−2 sin^3 θ
=2 sinθ(1−sin^2 θ)+sinθ−2 sin^3 θ,(since cos^2 θ= 1 −sin^2 θ)=2 sinθ−2 sin^3 θ+sinθ−2 sin^3 θ
i.e.sin 3θ=3 sinθ−4 sin^3 θProblem 12. Prove that1 −cos 2θ
sin 2θ=tanθ.LHS=1 −cos 2θ
sin 2θ=1 −(1−2 sin^2 θ)
2 sinθcosθ=2 sin^2 θ
2 sinθcosθ=sinθ
cosθ
=tanθ=RHSProblem 13. Prove thatcot 2x+cosec 2x=cotx.LHS=cot 2x+cosec 2x=cos 2x
sin 2x+1
sin 2x=cos 2x+ 1
sin 2x=(2 cos^2 x−1)+ 1
sin 2x=2 cos^2 x
sin 2x=2 cos^2 x
2 sinxcosx=cosx
sinx=cotx=RHS