COMPOUND ANGLES 183B
Now try the following exercise.
Exercise 82 Further problems on double
angles- The powerpin an electrical circuit is given
byp=v^2
R. Determine the power in terms of
V,Rand cos 2twhenv=[Vcost.
V^2
2 R
(1+cos 2t)]- Prove the following identities:
(a) 1−cos 2φ
cos^2 φ=tan^2 φ(b)1 +cos 2t
sin^2 t=2 cot^2 t(c)(tan 2x)(1+tanx)
tanx=2
1 −tanx
(d) 2 cosec 2θcos 2θ=cotθ−tanθ- If the third harmonic of a waveform is given
by V 3 cos 3θ, express the third harmonic
in terms of the first harmonic cosθ, when
V 3 =1.
[cos 3θ=4 cos^3 θ−3 cosθ]
18.4 Changing products of sines and
cosines into sums or differences
(i) sin(A+B)+sin(A−B)=2 sinAcosB (from
the formulae in Section 18.1)
i.e. sinAcosB
=^12 [sin(A+B)+sin(A−B)] (1)
(ii) sin(A+B)−sin(A−B)=2 cosAsinB
i.e. cosAsinB
=^12 [sin(A+B)−sin(A−B)] (2)
(iii) cos(A+B)+cos(A−B)=2 cosAcosB
i.e. cosAcosB
=^12 [cos(A+B)+cos(A−B)] (3)
(iv) cos(A+B)−cos(A−B)=−2 sinAsinB
i.e. sinAsinB
=−^12 [cos(A+B)−cos(A−B)] (4)Problem 14. Express sin 4xcos 3xas a sum or
difference of sines and cosines.From equation (1),sin 4xcos 3x=^12 [sin(4x+ 3 x)+sin(4x− 3 x)]=^12 (sin 7x+sinx)Problem 15. Express 2 cos 5θsin 2θas a sum
or difference of sines or cosines.From equation (2),2 cos 5θsin 2θ= 2{
1
2[sin(5θ+ 2 θ)−sin(5θ− 2 θ)]}=sin 7θ−sin 3θProblem 16. Express 3 cos 4tcostas a sum or
difference of sines or cosines.From equation (3),3 cos 4tcost= 3{
1
2[cos(4t+t)+cos(4t−t)]}=3
2(cos 5t+cos 3t)Thus, if the integral∫
3 cos 4tcostdtwas required
(for integration see Chapter 37), then
∫
3 cos 4tcostdt=∫
3
2(cos 5t+cos 3t)dt=3
2[
sin 5t
5+sin 3t
3]
+cProblem 17. In an alternating current circuit,
voltagev=5 sinωtand currenti=10 sin(ωt−
π/6). Find an expression for the instantaneous
powerpat timetgiven thatp=vi, expressing
the answer as a sum or difference of sines and
cosines.p=vi=(5 sinωt)[
10 sin(ωt−π/ 6 )]=50 sinωtsin(ωt−π/6)
From equation (4),
50 sinωtsin(ωt−π/6)
=(50)[
−^12{
cos (ωt+ωt−π/6)−cos[
ωt−(ωt−π/6)]}]=− 25 {cos(2ωt−π/6)−cosπ/ 6 }