Higher Engineering Mathematics

(Greg DeLong) #1
COMPOUND ANGLES 183

B

Now try the following exercise.


Exercise 82 Further problems on double
angles


  1. The powerpin an electrical circuit is given


byp=

v^2
R

. Determine the power in terms of
V,Rand cos 2twhenv=[Vcost.
V^2
2 R


(1+cos 2t)

]


  1. Prove the following identities:


(a) 1−

cos 2φ
cos^2 φ

=tan^2 φ

(b)

1 +cos 2t
sin^2 t

=2 cot^2 t

(c)

(tan 2x)(1+tanx)
tanx

=

2
1 −tanx
(d) 2 cosec 2θcos 2θ=cotθ−tanθ


  1. If the third harmonic of a waveform is given
    by V 3 cos 3θ, express the third harmonic
    in terms of the first harmonic cosθ, when
    V 3 =1.
    [cos 3θ=4 cos^3 θ−3 cosθ]


18.4 Changing products of sines and


cosines into sums or differences


(i) sin(A+B)+sin(A−B)=2 sinAcosB (from
the formulae in Section 18.1)
i.e. sinAcosB
=^12 [sin(A+B)+sin(A−B)] (1)
(ii) sin(A+B)−sin(A−B)=2 cosAsinB
i.e. cosAsinB
=^12 [sin(A+B)−sin(A−B)] (2)
(iii) cos(A+B)+cos(A−B)=2 cosAcosB
i.e. cosAcosB
=^12 [cos(A+B)+cos(A−B)] (3)
(iv) cos(A+B)−cos(A−B)=−2 sinAsinB
i.e. sinAsinB
=−^12 [cos(A+B)−cos(A−B)] (4)

Problem 14. Express sin 4xcos 3xas a sum or
difference of sines and cosines.

From equation (1),

sin 4xcos 3x=^12 [sin(4x+ 3 x)+sin(4x− 3 x)]

=^12 (sin 7x+sinx)

Problem 15. Express 2 cos 5θsin 2θas a sum
or difference of sines or cosines.

From equation (2),

2 cos 5θsin 2θ= 2

{
1
2

[sin(5θ+ 2 θ)−sin(5θ− 2 θ)]

}

=sin 7θ−sin 3θ

Problem 16. Express 3 cos 4tcostas a sum or
difference of sines or cosines.

From equation (3),

3 cos 4tcost= 3

{
1
2

[cos(4t+t)+cos(4t−t)]

}

=

3
2

(cos 5t+cos 3t)

Thus, if the integral


3 cos 4tcostdtwas required
(for integration see Chapter 37), then

3 cos 4tcostdt=


3
2

(cos 5t+cos 3t)dt

=

3
2

[
sin 5t
5

+

sin 3t
3

]
+c

Problem 17. In an alternating current circuit,
voltagev=5 sinωtand currenti=10 sin(ωt−
π/6). Find an expression for the instantaneous
powerpat timetgiven thatp=vi, expressing
the answer as a sum or difference of sines and
cosines.

p=vi=(5 sinωt)

[
10 sin(ωt−π/ 6 )

]

=50 sinωtsin(ωt−π/6)
From equation (4),
50 sinωtsin(ωt−π/6)
=(50)

[
−^12

{
cos (ωt+ωt−π/6)

−cos

[
ωt−(ωt−π/6)

]}]

=− 25 {cos(2ωt−π/6)−cosπ/ 6 }
Free download pdf