SCALAR AND VECTOR PRODUCTS 239
D
then cosθ=
a•b
ab
(1)
Let a=a 1 i+a 2 j+a 3 k
and b=b 1 i+b 2 j+b 3 k
a•b=(a 1 i+a 2 j+a 3 k)•(b 1 i+b 2 j+b 3 k)
Multiplying out the brackets gives:
a•b=a 1 b 1 i•i+a 1 b 2 i•j+a 1 b 3 i•k
+a 2 b 1 j•i+a 2 b 2 j•j+a 2 b 3 j•k
+a 3 b 1 k•i+a 3 b 2 k•j+a 3 b 3 k•k
However, the unit vectorsi,j andk all have a
magnitude of 1 andi•i=(1)(1) cos 0◦=1,i•j=
(1)(1) cos 90◦=0,i•k=(1)(1) cos 90◦=0 and sim-
ilarlyj•j=1,j•k=0 andk•k=1. Thus, only terms
containingi•i, j•jork•kin the expansion above
will not be zero.
Thus, the scalar product
a•b=a 1 b 1 +a 2 b 2 +a 3 b 3 (2)
Bothaandbin equation (1) can be expressed in
terms ofa 1 ,b 1 ,a 2 ,b 2 ,a 3 andb 3.
c
a
b
O
A B
P
Figure 22.7
From the geometry of Fig. 22.7, the length of diag-
onalOPin terms of side lengthsa,bandccan be
obtained from Pythagoras’ theorem as follows:
OP^2 =OB^2 +BP^2 and
OB^2 =OA^2 +AB^2
Thus, OP^2 =OA^2 +AB^2 +BP^2
=a^2 +b^2 +c^2 ,
in terms of side lengths
Thus, thelengthormodulusormagnitudeornorm
of vectorOPis given by:
OP=
√
(a^2 +b^2 +c^2 ) (3)
Relating this result to the two vectorsa 1 i+a 2 j+
a 3 kandb 1 i+b 2 j+b 3 k, gives:
a=
√
(a^21 +a^22 +a^23 )
and b=
√
(b^21 +b^22 +b^23 ).
That is, from equation (1),
cosθ=
a 1 b 1 +a 2 b 2 +a 3 b 3
√
(a^21 +a^22 +a^23 )
√
(b^21 +b^22 +b 32 )
(4)
Problem 2. Find vectorajoining pointsPand
Qwhere pointPhas co-ordinates (4,−1, 3) and
pointQhas co-ordinates (2, 5, 0). Also, find|a|,
the magnitude or norm ofa.
Let O be the origin, i.e. its co-ordinates are (0, 0, 0).
The position vector ofPandQare given by:
OP= 4 i−j+ 3 kandOQ= 2 i+ 5 j
By the addition law of vectorsOP+PQ=OQ.
Hence a=PQ=OQ−OP
i.e. a=PQ=(2i+ 5 j)−(4i−j+ 3 k)
=− 2 i+ 6 j− 3 k
From equation (3), the magnitude or norm ofa,
|a|=
√
(a^2 +b^2 +c^2 )
=
√
[(−2)^2 + 62 +(−3)^2 ]=
√
49 = 7
Problem 3. Ifp= 2 i+j−kand
q=i− 3 j+ 2 kdetermine:
(i)p•q (ii)p+q
(iii)|p+q| (iv)|p|+|q|