COMPLEX NUMBERS 255E
Modulus, |Z|=r=
√
(2^2 + 32 )=√
13 or 3. 606 ,
correct to 3 decimal places.
Argument,argZ=θ=tan−^132
= 56. 31 ◦or 56 ◦ 19 ′In polar form, 2+j3 is written as 3. 606 ∠ 56 ◦ 19 ′.
Problem 10. Express the following complex
numbers in polar form:(a) 3+j 4 (b)− 3 +j 4(c)− 3 −j4 (d) 3−j 4(a) 3+j4 is shown in Fig. 23.6 and lies in the first
quadrant.− 2 − 1 12
−j
−j 2−j 3−j 4jj 2j 3(− 3 +j4) j 4 (3+j4)(− 3 −j4) (3−j4)− 3 3rrrReal axisImaginary
axisrθ
αααFigure 23.6
Modulus, r=√
(3^2 + 42 )=5 and argument
θ=arctan^43 = 53. 13 ◦= 53 ◦ 8 ′.Hence 3 +j 4 = 5 ∠ 53 ◦ 8 ′(b) − 3 +j4 is shown in Fig. 23.6 and lies in the
second quadrant.
Modulus, r=5 and angle α= 53 ◦ 8 ′, from
part (a).Argument= 180 ◦− 53 ◦ 8 ′= 126 ◦ 52 ′ (i.e. the
argument must be measured from the positive
real axis).Hence− 3 +j 4 = 5 ∠ 126 ◦ 52 ′(c)− 3 −j4 is shown in Fig. 23.6 and lies in the
third quadrant.Modulus,r=5 andα= 53 ◦ 8 ′,asabove.Hence the argument= 180 ◦+ 53 ◦ 8 ′= 233 ◦ 8 ′,
which is the same as− 126 ◦ 52 ′.Hence(− 3 −j 4 )= 5 ∠ 233 ◦ 8 ′or 5∠− 126 ◦ 52 ′(By convention theprincipal valueis normally
used, i.e. the numerically least value, such that
−π<θ<π).(d) 3−j4 is shown in Fig. 23.6 and lies in the fourth
quadrant.Modulus,r=5 and angleα= 53 ◦ 8 ′,asabove.Hence( 3 −j 4 )= 5 ∠− 53 ◦ 8 ′Problem 11. Convert (a) 4∠ 30 ◦(b) 7∠− 145 ◦
intoa+jbform, correct to 4 significant figures.(a) 4∠ 30 ◦is shown in Fig. 23.7(a) and lies in the
first quadrant.4
30 °^(^0) x Real axis
jy
Real axis
(b)
7
145 °
x
jy
(a)
Imaginary
axis
α
Figure 23.7
Using trigonometric ratios,x=4 cos 30◦= 3. 464
andy=4 sin 30◦= 2 .000.
Hence 4∠ 30 ◦= 3. 464 +j 2. 000
(b) 7∠ 145 ◦is shown in Fig. 23.7(b) and lies in the
third quadrant.
Angleα= 180 ◦− 145 ◦= 35 ◦