Higher Engineering Mathematics

(Greg DeLong) #1
DIFFERENTIATION OF PARAMETRIC EQUATIONS 317

G

From equation (1),

dy
dx

=

dy

dx

=

6 sin^2 θcosθ
−6 cos^2 θsinθ

=−

sinθ
cosθ

=−tanθ

Whenθ=

π
4

,

dy
dx

=−tan

π
4

=− 1

x 1 =2 cos^3

π
4

= 0 .7071 andy 1 =2 sin^3

π
4

= 0. 7071

Hence,the equation of the normal is:

y− 0. 7071 =−

1
− 1

(x− 0 .7071)

i.e. y− 0. 7071 =x− 0. 7071
i.e. y=x

Problem 6. The parametric equations for a
hyperbola arex=2 secθ,y=4 tanθ. Evaluate

(a)

dy
dx

(b)

d^2 y
dx^2

, correct to 4 significant figures,
whenθ=1 radian.

(a)x=2 secθ, hence

dx

=2 secθtanθ

y=4 tanθ, hence

dy

=4 sec^2 θ

From equation (1),

dy
dx

=

dy

dx

=

4 sec^2 θ
2 secθtanθ

=

2 secθ
tanθ

=

2

(
1
cosθ

)

(
sinθ
cosθ

) =

2
sinθ

or 2 cosecθ

Whenθ=1 rad,

dy
dx

=

2
sin 1

=2.377, correct to
4 significant figures.

(b) From equation (2),


d^2 y
dx^2

=

d

(
dy
dx

)

dx

=

d

(2 cosecθ)

2 secθtanθ

=

−2 cosecθcotθ
2 secθtanθ

=


(
1
sinθ

)(
cosθ
sinθ

)

(
1
cosθ

)(
sinθ
cosθ

)

=−

(
cosθ
sin^2 θ

)(
cos^2 θ
sinθ

)

=−

cos^3 θ
sin^3 θ

=−cot^3 θ

When θ=1 rad,

d^2 y
dx^2

=−cot^31 =−

1
(tan 1)^3
=−0.2647, correct to 4 significant figures.

Problem 7. When determining the surface ten-
sion of a liquid, the radius of curvature,ρ, of part
of the surface is given by:

ρ=

√√


[

1 +

(
dy
dx

) 2 ] 3

d^2 y
dx^2

Find the radius of curvature of the part of the
surface having the parametric equationsx= 3 t^2 ,
y= 6 tat the pointt=2.

x= 3 t^2 , hence

dx
dt

= 6 t

y= 6 t, hence

dy
dt

= 6

From equation (1),

dy
dx

=

dy
dt
dx
dt

=

6
6 t

=

1
t

From equation (2),

d^2 y
dx^2

=

d
dt

(
dy
dx

)

dx
dt

=

d
dt

(
1
t

)

6 t

=


1
t^2
6 t

=−

1
6 t^3
Free download pdf