DIFFERENTIATION OF PARAMETRIC EQUATIONS 317
G
From equation (1),
dy
dx
=
dy
dθ
dx
dθ
=
6 sin^2 θcosθ
−6 cos^2 θsinθ
=−
sinθ
cosθ
=−tanθ
Whenθ=
π
4
,
dy
dx
=−tan
π
4
=− 1
x 1 =2 cos^3
π
4
= 0 .7071 andy 1 =2 sin^3
π
4
= 0. 7071
Hence,the equation of the normal is:
y− 0. 7071 =−
1
− 1
(x− 0 .7071)
i.e. y− 0. 7071 =x− 0. 7071
i.e. y=x
Problem 6. The parametric equations for a
hyperbola arex=2 secθ,y=4 tanθ. Evaluate
(a)
dy
dx
(b)
d^2 y
dx^2
, correct to 4 significant figures,
whenθ=1 radian.
(a)x=2 secθ, hence
dx
dθ
=2 secθtanθ
y=4 tanθ, hence
dy
dθ
=4 sec^2 θ
From equation (1),
dy
dx
=
dy
dθ
dx
dθ
=
4 sec^2 θ
2 secθtanθ
=
2 secθ
tanθ
=
2
(
1
cosθ
)
(
sinθ
cosθ
) =
2
sinθ
or 2 cosecθ
Whenθ=1 rad,
dy
dx
=
2
sin 1
=2.377, correct to
4 significant figures.
(b) From equation (2),
d^2 y
dx^2
=
d
dθ
(
dy
dx
)
dx
dθ
=
d
dθ
(2 cosecθ)
2 secθtanθ
=
−2 cosecθcotθ
2 secθtanθ
=
−
(
1
sinθ
)(
cosθ
sinθ
)
(
1
cosθ
)(
sinθ
cosθ
)
=−
(
cosθ
sin^2 θ
)(
cos^2 θ
sinθ
)
=−
cos^3 θ
sin^3 θ
=−cot^3 θ
When θ=1 rad,
d^2 y
dx^2
=−cot^31 =−
1
(tan 1)^3
=−0.2647, correct to 4 significant figures.
Problem 7. When determining the surface ten-
sion of a liquid, the radius of curvature,ρ, of part
of the surface is given by:
ρ=
√√
√
√
[
1 +
(
dy
dx
) 2 ] 3
d^2 y
dx^2
Find the radius of curvature of the part of the
surface having the parametric equationsx= 3 t^2 ,
y= 6 tat the pointt=2.
x= 3 t^2 , hence
dx
dt
= 6 t
y= 6 t, hence
dy
dt
= 6
From equation (1),
dy
dx
=
dy
dt
dx
dt
=
6
6 t
=
1
t
From equation (2),
d^2 y
dx^2
=
d
dt
(
dy
dx
)
dx
dt
=
d
dt
(
1
t
)
6 t
=
−
1
t^2
6 t
=−
1
6 t^3