328 DIFFERENTIAL CALCULUSi.e.dy
dx=x√
(x− 1 ){
1
x(x− 1 )−ln(x− 1 )
x^2}(b) Whenx=2,dy
dx=^2√
(1){
1
2(1)−ln (1)
4}=± 1{
1
2− 0}
=±1
2Problem 8. Differentiatex^3 x+^2 with respect
tox.Lety=x^3 x+^2
Taking Napierian logarithms of both sides gives:
lny=lnx^3 x+^2i.e. lny=(3x+2) lnx, by law (iii) of Section 31.2
Differentiating each term with respect toxgives:1
ydy
dx=(3x+2)(
1
x)
+(lnx)(3),by the product rule.Hencedy
dx=y{
3 x+ 2
x+3lnx}=x^3 x+^2{
3 x+ 2
x+3lnx}=x^3 x+^2{
3 +2
x+3lnx}Now try the following exercise.Exercise 134 Further problems on differen-
tiating[f(x)]xtype functionsIn Problems 1 to 4, differentiate with respect tox1.y=x^2 x [2x^2 x(1+lnx)]2.y=(2x−1)x
[
(2x−1)x{
2 x
2 x− 1+ln(2x−1)}]3.y= x√
(x+3)
[
√x(x+3){
1
x(x+3)−ln(x+3)
x^2}]4.y= 3 x^4 x+^1[
3 x^4 x+^1{
4 +1
x+4lnx}]- Show that wheny= 2 xxandx=1,
dy
dx=2.- Evaluate
d
dx{√x
(x−2)}
whenx=3.
[
1
3]- Show that ify=θθ and θ=2,
dy
dθ= 6 .77,
correct to 3 significant figures.