328 DIFFERENTIAL CALCULUS
i.e.
dy
dx
=x
√
(x− 1 )
{
1
x(x− 1 )
−
ln(x− 1 )
x^2
}
(b) Whenx=2,
dy
dx
=^2
√
(1)
{
1
2(1)
−
ln (1)
4
}
=± 1
{
1
2
− 0
}
=±
1
2
Problem 8. Differentiatex^3 x+^2 with respect
tox.
Lety=x^3 x+^2
Taking Napierian logarithms of both sides gives:
lny=lnx^3 x+^2
i.e. lny=(3x+2) lnx, by law (iii) of Section 31.2
Differentiating each term with respect toxgives:
1
y
dy
dx
=(3x+2)
(
1
x
)
+(lnx)(3),
by the product rule.
Hence
dy
dx
=y
{
3 x+ 2
x
+3lnx
}
=x^3 x+^2
{
3 x+ 2
x
+3lnx
}
=x^3 x+^2
{
3 +
2
x
+3lnx
}
Now try the following exercise.
Exercise 134 Further problems on differen-
tiating[f(x)]xtype functions
In Problems 1 to 4, differentiate with respect tox
1.y=x^2 x [2x^2 x(1+lnx)]
2.y=(2x−1)x
[
(2x−1)x
{
2 x
2 x− 1
+ln(2x−1)
}]
3.y= x
√
(x+3)
[
√x(x+3)
{
1
x(x+3)
−
ln(x+3)
x^2
}]
4.y= 3 x^4 x+^1
[
3 x^4 x+^1
{
4 +
1
x
+4lnx
}]
- Show that wheny= 2 xxandx=1,
dy
dx
=2.
- Evaluate
d
dx
{√x
(x−2)
}
whenx=3.
[
1
3
]
- Show that ify=θθ and θ=2,
dy
dθ
= 6 .77,
correct to 3 significant figures.