LOGARITHMIC DIFFERENTIATION 327G
4.y=e^2 xcos 3x
√
(x−4)
[
e^2 xcos 3x
√
(x−4){
2 −3 tan 3x−1
2(x−4)}]5.y= 3 θsinθcosθ
[
3 θsinθcosθ{
1
θ+cotθ−tanθ}]6.y=2 x^4 tanx
e^2 xln 2x[
2 x^4 tanx
e^2 xln 2x{
4
x+1
sinxcosx− 2 −1
xln 2x}]- Evaluate
dy
dxwhenx=1giveny=(x+1)^2√
(2x−1)
√
(x+3)^3[
13
16]- Evaluate
dy
dθ, correct to 3 significant figures,whenθ=π
4giveny=2eθsinθ
√
θ^5
[− 6 .71]31.4 Differentiation of[f(x)]x
Whenever an expression to be differentiated con-
tains a term raised to a power which is itself a
function of the variable, then logarithmic differen-
tiation must be used. For example, the differentia-
tion of expressions such asxx,(x+2)x,x
√
(x−1)
andx^3 x+^2 can only be achieved using logarithmic
differentiation.
Problem 5. Determinedy
dxgiveny=xx.Taking Napierian logarithms of both sides of
y=xxgives:
lny=lnxx=xlnx, by law (iii) of Section 31.2Differentiating both sides with respect toxgives:
1
ydy
dx=(x)(
1
x)
+(lnx)(1), using the product rulei.e.
1
ydy
dx= 1 +lnx,from which,dy
dx=y(1+lnx)i.e.dy
dx=xx( 1 +lnx)Problem 6. Evaluatedy
dxwhenx=−1given
y=(x+2)x.Taking Napierian logarithms of both sides of
y=(x+2)xgives:
lny=ln(x+2)x=xln (x+2), by law (iii)
of Section 31.2
Differentiating both sides with respect toxgives:1
ydy
dx=(x)(
1
x+ 2)
+[ln(x+2)](1),by the product rule.Hencedy
dx=y(
x
x+ 2+ln(x+2))=(x+ 2 )x{
x
x+ 2+ln(x+ 2 )}Whenx=−1,dy
dx=(1)−^1(
− 1
1+ln 1)=(+1)(−1)=− 1Problem 7. Determine (a) the differential coef-ficient of y=x√
(x−1) and (b) evaluatedy
dx
whenx=2.(a)y= x√
(x−1)=(x−1)1
x, since by the laws of
indicesn√
am=am
n
Taking Napierian logarithms of both sides gives:lny=ln(x−1)1
x=1
xln(x−1),by law (iii) of Section 31.2.
Differentiating each side with respect toxgives:1
ydy
dx=(
1
x)(
1
x− 1)
+[ln(x−1)](
− 1
x^2)
,by the product rule.Hencedy
dx=y{
1
x(x−1)−ln(x−1)
x^2}