DIFFERENTIATION OF HYPERBOLIC FUNCTIONS 331
G
32.2 Further worked problems on
differentiation of hyperbolic
functions
Problem 3. Differentiate the following with
respect tox:
(a) y=4sh2x−
3
7
ch 3x
(b) y=5th
x
2
−2 coth 4x
(a) y=4sh2x−
3
7
ch 3x
dy
dx
=4(2 cosh 2x)−
3
7
(3 sinh 3x)
=8 cosh 2x−
9
7
sinh 3x
(b) y=5th
x
2
−2 coth 4x
dy
dx
= 5
(
1
2
sech^2
x
2
)
−2(−4 cosech^24 x)
=
5
2
sech^2
x
2
+8 cosech^24 x
Problem 4. Differentiate the following with
respect to the variable: (a) y=4 sin 3tch 4t
(b)y=ln(sh 3θ)−4ch^23 θ.
(a) y=4 sin 3tch 4t(i.e. a product)
dy
dx
=(4 sin 3t)(4 sh 4t)+(ch 4t)(4)(3 cos 3t)
=16 sin 3tsh 4t+12 ch 4tcos 3t
= 4 (4 sin 3tsh 4t+3 cos 3tch 4t)
(b) y=ln(sh 3θ)−4ch^23 θ
(i.e. a function of a function)
dy
dθ
=
(
1
sh 3θ
)
(3 ch 3θ)−(4)(2 ch 3θ)(3 sh 3θ)
=3 coth 3θ−24 ch 3θsh 3θ
= 3 (coth 3θ−8ch3θsh 3θ)
Problem 5. Show that the differential coeffi-
cient of
y=
3 x^2
ch 4x
is: 6xsech 4x(1− 2 xth 4x)
y=
3 x^2
ch 4x
(i.e. a quotient)
dy
dx
=
(ch 4x)(6x)−(3x^2 )(4 sh 4x)
(ch 4x)^2
=
6 x(ch 4x− 2 xsh 4x)
ch^24 x
= 6 x
[
ch 4x
ch^24 x
−
2 xsh 4x
ch^24 x
]
= 6 x
[
1
ch 4x
− 2 x
(
sh 4x
ch 4x
)(
1
ch 4x
)]
= 6 x[sech 4x− 2 xth 4xsech 4x]
= 6 xsech 4x(1− 2 xth 4x)
Now try the following exercise.
Exercise 135 Further problems on differen-
tiation of hyperbolic functions
In Problems 1 to 5 differentiate the given func-
tions with respect to the variable:
- (a) 3 sh 2[ x (b) 2 ch 5θ (c) 4 th 9t
(a) 6 ch 2x(b) 10 sh 5θ(c) 36 sech^2 9t
]
- (a)
2
3
sech 5x (b)
5
8
cosech
t
2
(c) 2 coth 7θ
⎡
⎢
⎢
⎢
⎣
(a)−
10
3
sech 5xth 5x
(b)−
5
16
cosech
t
2
coth
t
2
(c)−14 cosech^27 θ
⎤
⎥
⎥
⎥
⎦
- (a) 2 ln(shx) (b)
3
4
ln
(
th
(
θ
2
))
[
(a) 2 cothx(b)
3
8
sech
θ
2
cosech
θ
2
]
- (a) sh 2xch 2x (b) 3e^2 xth 2x
[
(a) 2(sh^22 x+ch^22 x)
(b) 6e^2 x(sech^22 x+th 2x)
]
- (a)
3sh4x
2 x^3
(b)
ch 2t
cos 2t
⎡
⎢
⎣
(a)
12 xch 4x−9sh4x
2 x^4
(b)
2(cos 2tsh 2t+ch 2tsin 2t)
cos^22 t
⎤
⎥
⎦